1
|
Wang YQ, Chen LJ, Yang RL, Lang M, Peng JB. Oxidative [4+2] Annulation of Pyrrole-2-carbaldehyde Derivatives with o-Hydroxyphenyl Propargylamines: Syntheses of 5,6,7-Trisubstituted Indolizines. Chemistry 2024; 30:e202402487. [PMID: 39177474 DOI: 10.1002/chem.202402487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
A base promoted oxidative [4+2] annulation of pyrrole-2-carbaldehyde derivatives with o-hydroxyphenyl propargylamines for the synthesis of highly substituted indolizines has been developed. Using DBN as base, a broad range of 5,6,7-trisubstituted indolizines have been prepared in good to excellent yields under mild conditions, and many useful functional groups can be tolerated.
Collapse
Affiliation(s)
- Yu-Qing Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Li-Jia Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Rui-Lin Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| |
Collapse
|
2
|
Vargas DF, Fonzo S, Simonetti SO, Kaufman TS, Larghi EL. A rhodium-catalyzed C-H activation/cyclization approach toward the total syntheses of cassiarin C and 8- O-methylcassiarin A from a common intermediate. Org Biomol Chem 2024; 22:7880-7894. [PMID: 39247987 DOI: 10.1039/d4ob01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Three short and efficient total syntheses of cassiarin C are reported, from a chromanone common key intermediate. A C-H activation strategy, under rhodium catalysis on its pivaloyl oxime, enabled the installation of the pyridine ring. Dehydrogenation of 8-O-methylcassiarin C afforded 8-O-methylcassiarin A. A kinetic experiment and DFT calculations of the intermediates helped to gain insight into the unusual site- and stereo-specific H/D exchange of cassiarin C in CD3OD.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Santiago Fonzo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Sebastian O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
3
|
Tang Q, Liu Y, Fei B, Tao Q, Wang C, Jiang X, He X, Shang Y. Base-Mediated Cascade Lactonization/1,3-Dipolar Cycloaddition Pathway for the One-Pot Assembly of Coumarin-Functionalized Pyrrolo[2,1- a]isoquinolines. J Org Chem 2024; 89:8420-8434. [PMID: 38836769 DOI: 10.1021/acs.joc.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
An elegant and highly concise strategy for the construction of coumarin-functionalized pyrrolo[2,1-a]isoquinolines from available propargylamines and isoquinolinium N-ylides has been disclosed. In this reaction, isoquinolinium N-ylides acted as a C2 synthon to form a coumarin ring as well as a 1,3-dipole to construct a pyrrole ring in a single pot. This cascade process involves 1,4-conjugate addition/lactonization/1,3-dipolar cycloaddition to construct four chemical bonds (one C-O bond and three C-C bonds) and two new heterocyclic skeletons. Additionally, most of these compounds showed good fluorescence properties and exhibited high molar extinction coefficient and large Stokes shifts.
Collapse
Affiliation(s)
- Qiang Tang
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College and Anhui Normal University, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- The Institutes of Brain Science, Wannan Medical College, Wuhu 241001, P. R. China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - BinBin Fei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qianqian Tao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Chen Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College and Anhui Normal University, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, P. R. China
- The Institutes of Brain Science, Wannan Medical College, Wuhu 241001, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
4
|
Liu Y, Choy PY, Wang D, Wu M, Tang Q, He X, Shang Y, Kwong FY. Cascade Annulation Strategy for Expeditious Assembly of Hydroxybenzo[ c]chromen-6-ones and Their Photophysical Property Studies. J Org Chem 2023; 88:16609-16620. [PMID: 37978943 DOI: 10.1021/acs.joc.3c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A 1,8-diazabicyclo[5.4.0]undec-7-ene-promoted cascade double-annulation of ortho-alkynyl quinone methide (in situ generated from modular propargylamine) for constructing of 2-aryl-4-hydroxybenzo[c]chromen-6-ones is developed. This synthetic strategy offers remarkable operational simplicity as it allows the use of benchtop-grade solvents without the need for predrying measures and inert atmosphere protection. Additionally, it demonstrates good functional group compatibility. The photophysical properties of these compounds were also examined, revealing bright fluorescence with high quantum yields.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong, P. R. China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Fuk Yee Kwong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong, P. R. China
| |
Collapse
|
5
|
He X, Wang D, Liu Y, Wu M, Kong Y, Tang Q, Wang Y, Fan C, Shang Y. Synthesis of arene-functionalized fused heterocyclic scaffolds via a regioselective cascade 1,4-conjugate addition/5- exo-dig annulation strategy. Org Biomol Chem 2023; 21:9159-9172. [PMID: 37962430 DOI: 10.1039/d3ob01572f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Facile access to furan fused heterocyclic scaffolds through a regioselective cascade reaction of propargylamines with 4-hydroxy-2H-pyran-2-ones and 4-hydroxy-6-methylpyridin-2(1H)-one has been achieved. This cascade reaction presumably involves the formation of ortho-alkynyl quinone methide (o-AQM), 1,4-conjugate addition, followed by regioselective 5-exo-dig annulation, and a 1,3-H shift process. Moreover, the reaction provides a new and efficient method for the synthesis of highly sterically congested 3-phenolic furo[3,2-c]pyran-4-ones and furo[3,2-c]pyridin-4(5H)-ones by the formation of a furan ring from readily available starting materials in good to high yields (50-82%) with broad functional group compatibility in a single step. Significantly, the strategy described here is easily scalable and several useful synthetic transformations of the prepared arene-functionalized 4H-furo[3,2-c]pyran-4-ones were also performed.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yiping Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Chenli Fan
- School of Material Engineering, Wuhu Institute of Technology, Wuhu, 241002, People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
6
|
Cai B, Cui Y, Zhou J, Wang YB, Yang L, Tan B, Wang JJ. Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styrene-Phosphines. Angew Chem Int Ed Engl 2023; 62:e202215820. [PMID: 36424372 DOI: 10.1002/anie.202215820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
A Cu/CPA co-catalytic system has been developed for achieving the direct hydrophosphinylation of alkynes with phosphine oxides in delivering novel axially chiral phosphorus-containing alkenes in high yields and excellent enantioselectivities (up to 99 % yield and 99 % ee). DFT calculations were performed to elucidate the reaction pathway and the origin of enantiocontrol. This streamlined and modular methodology establishes a new platform for the design and application of new axially chiral styrene-phosphine ligands.
Collapse
Affiliation(s)
- Baohua Cai
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Cui
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Joelle Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Zhou P, Huang L, Xie Y, Ma G, Feng H. Amine-catalyzed metal-free deamination of propargylamines with water toward chalcones. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Torres‐Sauret Q, Vilchis‐Reyes MA, Martínez R, Romero‐Ceronio N, Alarcon‐Matus E, Hernández‐Abreu O, Vázquez Cancino R, Alvarado Sánchez. C. Crossing borders: On‐Water Synthesis of Flavanones. ChemistrySelect 2022. [DOI: 10.1002/slct.202202567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Quirino Torres‐Sauret
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Miguel A. Vilchis‐Reyes
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Roberto Martínez
- Instituto de Química Universidad Nacional Autónoma de México Circuito exterior s/n Ciudad Universitaria, Alcaldía Coyoacán CP 04510 Ciudad de México México
| | - Nancy Romero‐Ceronio
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Erika Alarcon‐Matus
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Oswaldo Hernández‐Abreu
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Romario Vázquez Cancino
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Cuauhtémoc Alvarado Sánchez.
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| |
Collapse
|
9
|
Albumin-catalysed synthesis of flavanones. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Sahoo SR, Das B, Sarkar D, Reuter H. Temperature-Controlled Chemoselective Synthesis of Multisubstituted 4-Alkynyl/ trans 4-Alkenyl Coumarins. J Org Chem 2022; 87:13529-13541. [PMID: 36206452 DOI: 10.1021/acs.joc.2c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A temperature-controlled facile synthesis of multisubstituted 4-alkynyl/trans 4-alkenyl coumarins with a metal salt cascade approach is reported. H2O serves both as a nucleophile and hydrogen source. The presence of metal salt facilitates the reduction of alkyne. The present protocol bypasses the structural shortcomings of the existing Sonogashira and Heck coupling reactions. In addition, the obtained 2,3-disubstituted coumarins are readily transformed into 2,3-disubstituted dihydrocoumarins, which serve as important building blocks in organic transformations.
Collapse
Affiliation(s)
- Sushree Ranjan Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Biswajit Das
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Debayan Sarkar
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India.,Department of Chemistry, Indian Institute Of Technology, Indore 452020, India
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraβe-6, Osnabrück 49076, Germany
| |
Collapse
|
11
|
Politanskaya L, Wang J, Troshkova N, Chuikov I, Bagryanskaya I. One-pot synthesis of fluorinated 2-arylchroman-4-one derivatives from 2-(triisopropylsilyl)ethynylphenols and aromatic aldehydes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
He X, Xu K, Liu Y, Wang D, Tang Q, Hui W, Chen H, Shang Y. Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4 H-chromen-4-ones. Molecules 2022; 27:7412. [PMID: 36364239 PMCID: PMC9654733 DOI: 10.3390/molecules27217412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
A robust metal- and solvent-free cascade radical-induced C-N cleavage/intramolecular 6-endo-dig annulation/hydrocarbonylation for the synthesis of the valuable 2-aryl-4H-chromen-4-ones is described. This practical synthesis strategy utilizes propargylamines and air as the oxygen source and green carbonylation reagent, in which propargylamines are activated by the inexpensive and available dimethyl 2,2'-azobis(2-methylpropionate) (AIBME) and (PhSe)2 as the radical initiators. This simple and green protocol features wide substrate adaptability, good functional group tolerance, and amenability to scaling up and derivatizations.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Xu X, Yan L, Zhang ZK, Lu B, Guo Z, Chen M, Cao ZY. Na2S-Mediated One-Pot Selective Deoxygenation of α-Hydroxyl Carbonyl Compounds including Natural Products. Molecules 2022; 27:molecules27154675. [PMID: 35897854 PMCID: PMC9330554 DOI: 10.3390/molecules27154675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the selective dehydroxylation of α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex natural products.
Collapse
Affiliation(s)
- Xiaobo Xu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
- Correspondence: (X.X.); (Z.-Y.C.)
| | - Leyu Yan
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhi-Kai Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
| | - Bingqing Lu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhuangwen Guo
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Mengyue Chen
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; (L.Y.); (B.L.); (Z.G.); (M.C.)
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China;
- Correspondence: (X.X.); (Z.-Y.C.)
| |
Collapse
|
14
|
Yi MH, Jin HS, Wang RB, Zhao LM. Copper-Catalyzed Cascade Annulation of o-Hydroxyphenyl Propargylamines with Pyrazolin-5-ones to Access Pyrano[2,3- c]pyrazoles. J Org Chem 2022; 87:5795-5803. [PMID: 35442039 DOI: 10.1021/acs.joc.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient copper-catalyzed cascade annulation of o-hydroxyphenyl propargylamines and pyrazolin-5-ones is described. This methodology leads to the rapid assembly of a series of valuable pyrano[2,3-c]pyrazoles with good yields across a wide range of substrates in a simple fashion. This novel reaction involves the formation of alkynyl ortho-quinone methides, a 1,4-conjugate addition, and a subsequent 6-endo cyclization process. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Meng-Hao Yi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Gao Y, Fu Z, Wu D, Yin H, Chen F. Organocatalyzed Asymmetric Tandem Intramolecular oxa‐Michael Addition/Electrophilic Thiocyanation: Synthesis of Chiral
α‐
Thiocyanato Flavanones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Gao
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Zhenda Fu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Di Wu
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| | - Fu‐Xue Chen
- School of Chemistry & Chemical Engineering Beijing Institute of Technology (Liangxiang Campus) No. 8 Liangxiang East Road Fangshan District Beijing 102488 P. R. China
| |
Collapse
|
16
|
Li N, Xu S, Wang X, Xu L, Qiao J, Liang Z, Xu X. Ag2CO3-catalyzed efficient synthesis of internal or terminal propargylicamines and chalcones via A3-coupling under solvent-free condition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Convenient synthesis of flavanone derivatives via oxa-Michael addition using catalytic amount of aqueous cesium fluoride. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Duan J, He X, Choy PY, Wang Q, Xie M, Li R, Xu K, Shang Y, Kwong FY. Cascade Lactonization/Benzannulation of Propargylamines with Dimethyl 3-Oxoglutarate for Modular Assembly of Hydroxylated/Arene-Functionalized Benzo[ c]chromen-6-ones. Org Lett 2021; 23:6455-6460. [PMID: 34342448 DOI: 10.1021/acs.orglett.1c02266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A DBU-mediated cascade strategy of propargylamines with dimethyl 3-oxoglutarate for constructing a functionalized benzo[c]chromen-6-one core has been achieved. This cascade process presumably involves a sequence of 1,4-conjugate addition, followed by lactonization, alkyne-allene isomerization, enol-keto tautomerization, 6π-electrocyclization, and aromatization. This protocol features mild reaction conditions, simple operation, rich structural diversity, and good functional group tolerance. A photophysical survey reveals that the benzo[c]chromen-6-one products exhibit fluorescence properties and show potential for exploring fluorescent material applications.
Collapse
Affiliation(s)
- Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Qi Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - KeKe Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| |
Collapse
|
19
|
He X, Li R, Choy PY, Xie M, Duan J, Tang Q, Shang Y, Kwong FY. A cascade double 1,4-addition/intramolecular annulation strategy for expeditious assembly of unsymmetrical dibenzofurans. Commun Chem 2021; 4:42. [PMID: 36697592 PMCID: PMC9814151 DOI: 10.1038/s42004-021-00478-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/18/2021] [Indexed: 01/28/2023] Open
Abstract
Existing synthetic routes for accessing dibenzofuran core have intrinsic regioselectivity, limiting the substitution patterns available in heteropolycyclic arene products. Here we report a double 1,4-conjugate addition/intramolecular annulation cascade reaction between propargylamines and two equivalents of imidazolium methylides that allows efficient access of structurally versatile dibenzofurans. This transition metal-free protocol proceeds smoothly under bench-top air atmosphere and offers easy manipulation of substituents on the dibenzofuran core, and also provides good-to-excellent product yields with good functional group tolerance, particularly the -Br and -Cl groups which are often incompatible with existing metal-catalyzed C-C and/or C-O bond ring-forming processes. It is worth noting that ladder-type π-systems with all-arene quarternary carbon structure can be straightforwardly generated upon simple late-stage functionalization.
Collapse
Affiliation(s)
- Xinwei He
- grid.440646.40000 0004 1760 6105Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China ,State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR PR China
| | - Ruxue Li
- grid.440646.40000 0004 1760 6105Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR PR China
| | - Mengqing Xie
- grid.440646.40000 0004 1760 6105Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China
| | - Jiahui Duan
- grid.440646.40000 0004 1760 6105Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China
| | - Qiang Tang
- grid.440646.40000 0004 1760 6105Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China
| | - Yongjia Shang
- grid.440646.40000 0004 1760 6105Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 PR China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong SAR PR China
| |
Collapse
|
20
|
Yan LQ, Yin Z, He X, Li Q, Li R, Duan J, Xu K, Tang Q, Shang Y. Copper-Catalyzed Cascade 1,4-Addition/Annulation/Hydrolysis of Propargylamines with 2-Hydroxynaphthalene-1,4-diones: Direct Formation of 12-Phenacyl-11 H-benzo[ b]xanthenes. J Org Chem 2021; 86:4182-4192. [PMID: 33625853 DOI: 10.1021/acs.joc.0c03029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and versatile approach to construct 12-phenacyl-11H-benzo[b]xanthene-6,11(12H)-dione derivatives through copper-catalyzed cascade reaction of propargylamines with 2-hydroxynaphthalene-1,4-diones has been developed. The procedure is proposed to go through a sequence of 1,4-conjugate addition, intramolecular nucleophilic addition/dehydration, and hydrolysis of alkyne followed by an enol-ketone tautomerization. The reaction provides a new and highly efficient method for the synthesis of 12-phenacyl-11H-benzo[b]xanthene-6,11(12H)-diones by formation of three new bonds and one heterocycle from readily available starting materials in good to high yields (70-88%) with broad functional group compatibility in a single step.
Collapse
Affiliation(s)
- Li-Qin Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Zhenzhen Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qianqian Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
21
|
He X, Li R, Choy PY, Liu T, Wang J, Yuen OY, Leung MP, Shang Y, Kwong FY. DMAP-Catalyzed Annulation Approach for Modular Assembly of Furan-Fused Chromenes. Org Lett 2020; 22:9444-9449. [DOI: 10.1021/acs.orglett.0c03374] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinwei He
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| | - Tianyi Liu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| | - Junya Wang
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| | - On Ying Yuen
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| | - Man Pan Leung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| |
Collapse
|
22
|
He X, Li R, Choy PY, Liu T, Yuen OY, Leung MP, Shang Y, Kwong FY. Rapid Access of Alkynyl and Alkenyl Coumarins via a Dipyridinium Methylide and Propargylamine Cascade Reaction. Org Lett 2020; 22:7348-7352. [DOI: 10.1021/acs.orglett.0c02674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xinwei He
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tianyi Liu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - On Ying Yuen
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Man Pan Leung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|