1
|
Liu L, Jiang Q, Tang L, Liu C, Wang Y, Wu F, Wu J. Copper-Catalyzed Asymmetric Tertiary Radical Cyanation for the Synthesis of Chiral Tetrasubstituted Monofluoroacyl Nitriles. Org Lett 2024; 26:10833-10839. [PMID: 39656094 DOI: 10.1021/acs.orglett.4c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The construction of chiral tetrasubstituted α-fluoro-α-cyano carbonyl compounds remains a key challenge in synthetic organic chemistry because of their popularity in multiple disciplines. In this paper, we report the copper-catalyzed asymmetric fluorinated tertiary radical cyanation reaction of cyclic α-iodo-α-fluoroindanones with TMSCN to achieve chiral nitriles with carbon-fluorine quaternary stereogenic centers. Thus, an array of optically active tetrasubstituted monofluoroacyl nitriles were synthesized with high reaction efficiency and excellent enantioselectivities (up to 91% yield, 99% ee). Moreover, mechanistic investigations, including experiments, were conducted to clarify the reaction pathway and stereochemical outcomes.
Collapse
Affiliation(s)
- Li Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Qi Jiang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Long Tang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Chao Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yanzhao Wang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
2
|
Zhao X, Gao Z, Luo Y. Co-Catalyzed Suzuki-Miyaura Coupling of Organoboronic Acids and Alkynyl Chlorides Using Potassium Bicarbonate as Base. Org Lett 2024; 26:9717-9721. [PMID: 39497651 DOI: 10.1021/acs.orglett.4c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Organoboronic acids, some of the most common and widely used organoboron compounds, have not yet been used in the cobalt-catalyzed cross coupling reactions, despite cobalt demonstrating good reactivity with zinc reagents, Grignard reagents, and metal organoborates that are formed by n-butyl lithium or alkaline metal alkoxide salts and organoboron esters. Herein, a highly efficient and practical cobalt-catalyzed coupling reaction of aryl/alkenyl boronic acids and alkynyl chloride under mild reaction conditions is reported. The advantages of the organoboronic acids, along with a broad functional group compatibility and the reaction's tolerance to moisture and air, enable this reaction to be a synthetically useful protocol for the construction of a C(sp2)-C(sp) bond. Lastly, the synthesis of two natural products and a key intermediate of roxadustat was effectively accomplished using the methodology to construct the critical alkynyl-aryl bond.
Collapse
Affiliation(s)
- Xu Zhao
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhiwei Gao
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunfei Luo
- Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
3
|
Chen D, Lepori C, Guillot R, Gil R, Bezzenine S, Hannedouche J. A Rationally Designed Iron(II) Catalyst for C(sp 3)-C(sp 2) and C(sp 3)-C(sp 3) Suzuki-Miyaura Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202408419. [PMID: 38774966 DOI: 10.1002/anie.202408419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Despite the paramount importance of the Suzuki-Miyaura coupling (SMC) in academia and industry, and the great promise of iron to offer sustainable catalysis, iron-catalyzed SMC involving sp3-hybridized partners is still in its infancy. We herein report the development of a versatile, well-defined electron-deficient anilido-aldimine iron(II) catalyst. This catalyst effectively performed C(sp3)-C(sp2) and C(sp3)-C(sp3) SMC of alkyl halide electrophiles and (hetero)aryl boronic ester and alkyl borane nucleophiles respectively, in the presence of a lithium amide base. These couplings operated under mild reaction conditions and displayed wide functional group compatibility including various medicinally relevant N-, O- and S-based heterocycles. They also tolerated primary, secondary and tertiary alkyl halides (Br, Cl, I), electron-neutral, -rich and -poor boronic esters and primary and secondary alkyl boranes. Our methodology could be directly and efficiently applied to synthesize key intermediates relevant to pharmaceuticals and a potential drug candidate. For C(sp3)-C(sp2) couplings, radical probe experiments militated in favor of a carbon-centered radical derived from the electrophile. At the same time, reactions run with a pre-formed activated boron nucleophile coupled to competition experiments supported the involvement of neutral, rather than an anionic, (hetero)aryl boronic ester in the key transmetalation step.
Collapse
Affiliation(s)
- Donghuang Chen
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Clément Lepori
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Richard Gil
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Sophie Bezzenine
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Jérôme Hannedouche
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| |
Collapse
|
4
|
Csókás D, Mondal B, Đokić M, Gupta R, Lee BJY, Young RD. Stereoselective Synthesis of Fluoroalkanes via FLP Mediated Monoselective C─F Activation of Geminal Difluoroalkanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305768. [PMID: 37907424 PMCID: PMC10754124 DOI: 10.1002/advs.202305768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/02/2023]
Abstract
A method of desymmetrization of geminal difluoroalkanes using frustrated Lewis pair (FLP) mediated monoselective C-F activation where a chiral sulfide is the Lewis base component is reported. The stereoselective reaction provides generally high yields of diastereomeric sulfonium salts with dr of up to 95:5. The distribution of diastereomers is found to be thermodynamically controlled via facile sulfide exchange. The use of enantiopure chiral sulfides allows for high stereospecificity in nucleophilic substitution reactions and the formation of stereoenriched products.
Collapse
Affiliation(s)
- Dániel Csókás
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- Research Centre for Natural SciencesInstitute of Organic ChemistryBudapest1117Hungary
| | - Bivas Mondal
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Miloš Đokić
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Richa Gupta
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Beatrice J. Y. Lee
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Rowan D. Young
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt Lucia4067Australia
| |
Collapse
|
5
|
Wang J, Shen X, Chen X, Bao Y, He J, Lu Z. Cobalt-Catalyzed Enantioconvergent Negishi Cross-Coupling of α-Bromoketones. J Am Chem Soc 2023. [PMID: 37906733 DOI: 10.1021/jacs.3c09807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cobalt-catalyzed enantioconvergent cross-coupling of α-bromoketones with aryl zinc reagents is achieved to access chiral ketones bearing α-tertiary stereogenic centers with high enantioselectivities. The more challenging and sterically hindered α-bromoketones bearing a 2-fluorophenyl group or β-secondary and tertiary alkyl chains could also be well-tolerated. Adjusting the electronic effect of chiral unsymmetric N,N,N-tridentate ligands is critical for improving the reactivity and selectivity of this transformation, which is beneficial for further studies of asymmetric 3d metal catalysis via ligand modification. The control experiments and kinetic studies illustrated that the reaction involved radical intermediates and the reductive elimination was a rate-determining step.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuzhong Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
6
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
7
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
8
|
Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Xu N, Liang H, Morken JP. Copper-Catalyzed Stereospecific Transformations of Alkylboronic Esters. J Am Chem Soc 2022; 144:11546-11552. [PMID: 35735669 PMCID: PMC10436227 DOI: 10.1021/jacs.2c04037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper-catalyzed stereospecific cross-couplings of boronic esters are reported. Boron "ate" complexes derived from pinacol boronic esters and tert-butyl lithium undergo stereospecific transmetalation to copper cyanide, followed by coupling with alkynyl bromides, allyl halides, propargylic halides, β-haloenones, hydroxylamine esters, and acyl chlorides. Through this simple transformation, commercially available inexpensive compounds can be employed to convert primary and secondary alkylboronic esters to a wide array of synthetically useful compounds.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
10
|
Lu H, Xiao RX, Shi CY, Song ZL, Lin HW, Zhang A. Synthesis of aryldifluoromethyl aryl ethers via nickel-catalyzed suzuki cross-coupling between aryloxydifluoromethyl bromides and boronic acids. Commun Chem 2022; 5:78. [PMID: 36697792 PMCID: PMC9814959 DOI: 10.1038/s42004-022-00694-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/22/2022] [Indexed: 01/28/2023] Open
Abstract
As a unique organofluorine fragment, gem-difluoromethylated motifs have received widespread attention. Here, a convenient and efficient synthesis of aryldifluoromethyl aryl ethers (ArCF2OAr') was established via Nickel-catalyzed aryloxydifluoromethylation with arylboronic acids. This approach features easily accessible starting materials, good tolerance of functionalities, and mild reaction conditions. Diverse late-stage difluoromethylation of many pharmaceuticals and natural products were readily realized. Notably, a new difluoromethylated PD-1/PD-L1 immune checkpoint inhibitor was conveniently synthesized and showed both improved metabolic stability and enhanced antitumor efficacy. Preliminary mechanistic studies suggested the involvement of a Ni(I/III) catalytic cycle.
Collapse
Affiliation(s)
- Heng Lu
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ruo-Xuan Xiao
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Chang-Yun Shi
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Zi-Lan Song
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hou-Wen Lin
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ao Zhang
- grid.16821.3c0000 0004 0368 8293Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
11
|
Guo C, Han X, Feng Y, Liu Z, Li Y, Liu H, Zhang L, Dong Y, Li X. Straightforward Synthesis of Alkyl Fluorides via Visible-Light-Induced Hydromono- and Difluoroalkylations of Alkenes with α-Fluoro Carboxylic Acids. J Org Chem 2022; 87:9232-9241. [PMID: 35748751 DOI: 10.1021/acs.joc.2c00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report the first visible-light-induced hydromono- and difluoroalkylations of alkenes with inexpensive and easily accessible α-fluoro carboxylic acids. This metal-free protocol exhibits mild conditions, high efficiency, and excellent functional-group tolerance, providing a straightforward approach to mono- and difluoroalkylated alkanes. Moreover, the fluorine effect on the hydrofluoroalkylation reaction is discussed in detail.
Collapse
Affiliation(s)
- Chunfang Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China.,Shandong Vocational College of Light Industry, Zhoucun Mishan Road, Zibo 255300, P. R. China
| | - Xuliang Han
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yu Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Zhaolong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
12
|
Nambo M, Crudden CM. Sequential Transformations of Organosulfones on the Basis of Properties of Sulfonyl Groups. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules, Nagoya University
| | | |
Collapse
|
13
|
Butcher TW, Amberg WM, Hartwig JF. Transition‐Metal‐Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C−C Bond Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Willi M. Amberg
- Department of Chemistry and Applied Biosciences Laboratory of Organic Chemistry ETH Zϋrich 8093 Zϋrich Switzerland
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
14
|
Guo C, Liu Z, Li X, Han X, Li Y, Liu H, Zhang L, Li X, Dong Y. Silver-catalyzed monofluoroalkylation of heteroarenes with α-fluorocarboxylic acids: an insight into the solvent effect. Chem Commun (Camb) 2022; 58:1147-1150. [PMID: 34981099 DOI: 10.1039/d1cc06466e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient method for direct C-H monofluoroalkylation of heteroarenes with easily accessible and inexpensive α-fluorocarboxylic acids has been developed. This silver-catalyzed reaction affords mono- and bis-monofluoroalkylated heteroarenes in good yields under mild conditions, and the solvent effect on the monofluoroalkylation reaction is discussed in detail.
Collapse
Affiliation(s)
- Chunfang Guo
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China. .,Shandong Vocational College of Light Industry, Zhoucun Mishan Road, Zibo, 255300, China
| | - Zhaolong Liu
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xiangye Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xuliang Han
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Yueyun Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Lizhi Zhang
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xinjin Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunhui Dong
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| |
Collapse
|
15
|
Zheng K, Liu Y, Zheng C, Yan F, Xiao H, feng Y, Fan S. Palladium‐Catalyzed Monofluoroalkylation of Aryl Iodides and Aryl Bromides with Nucleophilic Ethyl 2‐Fluoro‐2‐(trimethylsilyl)acetate. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Hua Xiao
- Hefei University of Technology CHINA
| | | | - Shilu Fan
- Hefei University of Technology CHINA
| |
Collapse
|
16
|
Stereoselective formation of Z-monofluoroalkenes by nickel-catalyzed defluorinative coupling of gem-difluoroalkenes with lithium organoborates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Li Y, Gao N, Cao G, Teng D. The Co( ii)/spiroBox-catalyzed enantioselective Mukaiyama-Mannich reaction for the synthesis of quaternary α-amino acid derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj00623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co(ii)/spiroBox-catalyzed Mukaiyama-Mannich reactions of enol silyl ethers with cyclic N-sulfonyl ketimino esters were examined and showed excellent yields and enantioselectivity values.
Collapse
Affiliation(s)
- Yanshun Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nanxing Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guorui Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dawei Teng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
18
|
|
19
|
Butcher TW, Amberg WM, Hartwig JF. Transition-Metal-Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C-C Bond Formation. Angew Chem Int Ed Engl 2021; 61:e202112251. [PMID: 34658121 DOI: 10.1002/anie.202112251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/09/2022]
Abstract
Alkyl fluorides modulate the conformation, lipophilicity, metabolic stability, and p K a of compounds containing aliphatic motifs and, therefore, have been valuable for medicinal chemistry. Despite significant research in organofluorine chemistry, the synthesis of alkyl fluorides, especially chiral alkyl fluorides, remains a challenge. Most commonly, alkyl fluorides are prepared by the formation of C-F bonds (fluorination), and numerous strategies for nucleophilic, electrophilic, and radical fluorination have been reported in recent years. Although strategies to access alkyl fluorides by C-C bond formation (monofluoroalkylation) are inherently convergent and complexity-generating, they have studied less than methods based on fluorination. This Review provides an overview of recent developments in the synthesis of chiral (enantioenriched or racemic) secondary and tertiary alkyl fluorides by monofluoroalkylation catalyzed by transition-metal complexes. We expect this contribution will illuminate the potential of monofluoroalkylations to simplify the synthesis of complex alkyl fluorides and suggest further research directions in this growing field.
Collapse
Affiliation(s)
| | - Willi M Amberg
- University of California Berkeley, Chemistry, UNITED STATES
| | - John F Hartwig
- University of California, Department of Chemistry, 718 LATIMER HALL #1460, 94720-1460, Berkeley, UNITED STATES
| |
Collapse
|
20
|
Nambo M, Crudden CM. Transition Metal-Catalyzed Cross-Couplings of Benzylic Sulfone Derivatives. CHEM REC 2021; 21:3978-3989. [PMID: 34523788 DOI: 10.1002/tcr.202100210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
In recent years, the use of organosulfones as a new class of cross-coupling partner in transition-metal catalyzed reactions has undergone significant advancement. In this personal account, our recent investigations into desulfonylative cross-coupling reactions of benzylic sulfone derivatives catalyzed by Pd, Ni, and Cu catalysis is described. Combined with the facile α-functionalizations of sulfones, our methods can be used to form valuable multiply-arylated structures such as di-, tri-, and, tetraarylmethanes from readily available substrates. The reactivity of sulfones can be increased by introducing electron-withdrawing substituents such as 3,5-bis(trifluoromethyl)phenyl and trifluoromethyl groups, which enable more challenging cross-coupling reactions. Reactive intermediates including Cu-carbene complexes were identified as key intermediates in sulfone activation, representing new types of C-SO2 bond activation processes. These results indicate sulfones are powerful functional groups, enabling new catalytic desulfonylative transformations.
Collapse
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-860, Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-860, Japan.,Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
21
|
Shu T, Cossy J. Enantioselective Cross-couplings between Halide Derivatives and Organometallics by Using Iron and Cobalt Catalysts: Formation of C-C Bonds. Chemistry 2021; 27:11021-11029. [PMID: 34014609 DOI: 10.1002/chem.202101363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/12/2022]
Abstract
This review highlights the recent achievements of iron- and cobalt-catalyzed enantioselective cross-couplings of halide derivatives with organometallic reagents for the construction of C-C bonds. Synthetic applications of enantioselective cross-couplings to natural products and biologically active compounds are also covered showing the power of these cross-couplings in organic synthesis.
Collapse
Affiliation(s)
- Tao Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, Hubei, P. R. China
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials ESPCI Paris, PSL University, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
22
|
Li Z, Cheng XY, Yang NY, Chen JJ, Tang WY, Bian JQ, Cheng YF, Li ZL, Gu QS, Liu XY. A Cobalt-Catalyzed Enantioconvergent Radical Negishi C(sp 3)–C(sp 2) Cross-Coupling with Chiral Multidentate N, N, P-Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuang Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xian-Yan Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Jun Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Yue Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
23
|
Pd Nanoparticles Embedded Into MOF-808: Synthesis, Structural Characteristics, and Catalyst Properties for the Suzuki–Miyaura Coupling Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03731-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhou H, Li ZL, Gu QS, Liu XY. Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp 3)–C Cross-Coupling Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
25
|
Wu S, Huang Z, Jiang X, Yan F, Li Y, Du CX. Recyclable Oxofluorovanadate-Catalyzed Formylation of Amines by Reductive Functionalization of CO 2 with Hydrosilanes. CHEMSUSCHEM 2021; 14:1763-1766. [PMID: 33587333 DOI: 10.1002/cssc.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Indexed: 06/12/2023]
Abstract
An efficient method has been developed for the reductive amination of CO2 by using readily available and recyclable oxofluorovanadates as catalysts. Various amines are transformed into the desired N-formylated products in moderate to excellent yields at room temperature in the presence of phenylsilane. Mechanistic studies based on in situ infrared spectroscopy suggest a reaction pathway initiated through F-Si interactions. The activated phenylsilane allows for CO2 insertion to produce phenylsilyl formate, which undergoes attack by the amine to generate the target product.
Collapse
Affiliation(s)
- Shanxuan Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zijun Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Xiaolin Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Fachao Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chen-Xia Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
26
|
Varenikov A, Shapiro E, Gandelman M. Synthesis of Chiral α-CF 3-Substituted Benzhydryls via Cross-Coupling Reaction of Aryltitanates. Org Lett 2020; 22:9386-9391. [PMID: 33210926 DOI: 10.1021/acs.orglett.0c03673] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe a highly efficient approach toward α-CF3-substituted benzhydryls thanks to the employment of organotitanium(IV) based nucleophiles. The use of commercially available anesthetic halothane as a cheap fluorinated building block in a sequential one-pot nickel-catalyzed enantioselective cross-coupling reaction of aryl titanates allowed for the synthesis of chiral α-CF3-substituted benzhydryls in good yields and excellent enantioselectivities. Alternatively, α-CF3-benzyl bromides could be employed under similar conditions to obtain the same family of compounds in higher yields and excellent selectivities. A benzhydryl moiety is a common motif in many biologically active compounds, and their enantioenriched fluorinated analogs should be of great interest in the search for novel drugs and agrochemicals.
Collapse
Affiliation(s)
- Andrii Varenikov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Evgeny Shapiro
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
27
|
Jiang SP, Dong XY, Gu QS, Ye L, Li ZL, Liu XY. Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C(sp 3)-C(sp 2) Cross-Coupling. J Am Chem Soc 2020; 142:19652-19659. [PMID: 33146993 DOI: 10.1021/jacs.0c09125] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A copper-catalyzed enantioconvergent Suzuki-Miyaura C(sp3)-C(sp2) cross-coupling of various racemic alkyl halides with organoboronate esters has been established in high enantioselectivity. Critical to the success is the use of a chiral cinchona alkaloid-derived N,N,P-ligand for not only enhancing the reducing capability of copper catalyst to favor a stereoablative radical pathway over a stereospecific SN2-type process but also providing an ideal chiral environment to achieve the challenging enantiocontrol over the highly reactive radical species. The reaction has a broad scope with respect to both coupling partners, covering aryl- and heteroarylboronate esters, as well as benzyl-, heterobenzyl-, and propargyl bromides and chlorides with good functional group compatibility. Thus, it provides expedient access toward a range of useful enantioenriched skeletons featuring chiral tertiary benzylic stereocenters.
Collapse
Affiliation(s)
- Sheng-Peng Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Haibach MC, Ickes AR, Wilders AM, Shekhar S. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alison M. Wilders
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
29
|
Ludwig JR, Simmons EM, Wisniewski SR, Chirik PJ. Cobalt-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross Coupling. Org Lett 2020; 23:625-630. [PMID: 32996312 DOI: 10.1021/acs.orglett.0c02934] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt-catalyzed method for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of aryl boronic esters and alkyl bromides is described. Cobalt-ligand combinations were assayed with high-throughput experimentation, and cobalt(II) sources with trans-N,N'-dimethylcyclohexane-1,2-diamine (DMCyDA, L1) produced optimal yield and selectivity. The scope of this transformation encompassed steric and electronic diversity on the aryl boronate nucleophile as well as various levels of branching and synthetically valuable functionality on the electrophile. Radical trap experiments support the formation of electrophile-derived radicals during catalysis.
Collapse
Affiliation(s)
- Jacob R Ludwig
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|