1
|
Zhang Y, Li Q, Zhang J, Chen M, Li X, Qiao Y, Wang K, Qi C, Zhang Y. Eurochevalierines A -I, Sesquiterpene Alkaloid Hybrids with Anti-Triple Negative Breast Cancer Activity from Penicillium sp. HZ-5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39016690 DOI: 10.1021/acs.jafc.4c04011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nine new sesquiterpene alkaloids, eurochevalierines A-I (1-9), were separated from the rice cultures of the endophytic fungus Penicillium sp. HZ-5 originated from the fresh leaf of Hypericum wilsonii N. Robson. The structures' illumination was conducted by single-crystal X-ray diffraction, extensive spectroscopic analysis, alkaline hydrolysis reaction, and Snatzke's method. Importantly, the antitumor activities screen of these isolates indicated that 1 could suppress triple negative breast cancer (TNBC) cell proliferation and induce apoptosis, with an IC50 value of 5.4 μM, which is comparable to the positive control docetaxel (DXT). Flow cytometry experiments mentioned that compound 1 significantly reduced mitochondrial membrane potential (MMP) of TNBC cells. In addition, 1 could activate caspase-3 and elevated the levels of reactive oxygen species (ROS) and expressions of suppressive cytokines and chemokines. Further Western blot analysis showed that 1 could selectively induce mitochondria-dependent apoptosis in TNBC cells via the BAX/BCL-2 pathway. Remarkably, these finding provide a new natural product skeleton for the treatment of TNBC.
Collapse
Affiliation(s)
- Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic, Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinlong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuben Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, School of Basic, Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Khamkar SL, Handore KL, Shinde HM, Reddy DS. Highly Stereoselective Diels-Alder-Based Strategy for the Synthesis of 3- epi-Formicin A and 1- epi-Formicin B. Org Lett 2024; 26:3961-3965. [PMID: 38679880 DOI: 10.1021/acs.orglett.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The first enantioselective approach based on a highly stereoselective Diels-Alder reaction for the synthesis of 3-epi-formicin A and 1-epi-formicin B with rare N-acetylcysteamine-containing indenone thioesters is reported. The strategy utilizes a key Diels-Alder reaction to form the core hydrindane system with three contiguous stereocenters in very high levels of diastereo- and regioselectivity and one-pot oxidation/isomerization/dehydrogenation. The scope of this method was tested with different substrates to give cycloadducts in a highly diastereoselective manner.
Collapse
Affiliation(s)
- Sunil L Khamkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- BASF Innovation Campus Mumbai, BASF Chemicals India Pvt. Ltd., Plot No. 12, TTC Area Thane Belapur Road, Turbhe, Navi Mumbai 400705, India
| | - Kishor L Handore
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Harish M Shinde
- BASF Innovation Campus Mumbai, BASF Chemicals India Pvt. Ltd., Plot No. 12, TTC Area Thane Belapur Road, Turbhe, Navi Mumbai 400705, India
| | - D Srinivasa Reddy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
4
|
Olano C, Rodríguez M. Actinomycetes Associated with Arthropods as a Source of New Bioactive Compounds. Curr Issues Mol Biol 2024; 46:3822-3838. [PMID: 38785506 PMCID: PMC11119530 DOI: 10.3390/cimb46050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance is one of the main global threats to human health in the 21st century due to the rapid appearance of bacterial resistance and the lack of novel bioactive compounds. Natural products, especially from Actinomycetes, remain the best source to refill the drug industry pipeline. Different strategies have been pursued to increase the chances of discovering new molecules, such as studying underexplored environments like arthropod symbionts, which represent a relevant reservoir for active metabolites. This review summarizes recent research on the identification of bioactive molecules produced by Actinomycetes associated with arthropods' microbiome. The metabolites have been categorized based on their structural properties and host, highlighting that multidisciplinary approaches will be the key to fully understanding this complex relationship.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
5
|
Bhat MUS, Ganie MA, Kumar S, Rizvi MA, Raheem S, Shah BA. Visible-Light-Mediated Synthesis of Thioesters Using Thiocarboxylic Acid as the Dual Reagent. J Org Chem 2024; 89:4607-4618. [PMID: 38509669 DOI: 10.1021/acs.joc.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We have developed a visible-light-driven method for thioester synthesis that relies on the unique dual role of thiobenzoic acids as one-electron reducing agents and reactants leading to the formation of sulfur radical species. This synthetic process offers a wide scope, accommodating various thioacid and thiol substrates without the need for a photocatalyst.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
6
|
Chen W, Sheng D, Jiang YF, Zhu WC, Rao W, Shen SS, Yang ZY, Wang SY. Nickel-Catalyzed Acid Chlorides with Tetrasulfides for the Synthesis of Thioesters and Acyl Disulfides. J Org Chem 2023; 88:15871-15880. [PMID: 37882877 DOI: 10.1021/acs.joc.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we report a novel method for the synthesis of thioesters and acyl disulfides via nickel-catalyzed reductive cross-electrophile coupling of acid chlorides with tetrasulfides. This approach for the synthesis of thioesters and acyl disulfides is convenient and practical under mild reaction conditions, relying on easy availability. In addition, a wide range of thioesters and acyl disulfides were obtained in medium to good yields with good functional group tolerance. Moreover, thioesters and acyl disulfides can also be prepared at the gram scale, indicating that they have certain potential for industrial application.
Collapse
Affiliation(s)
- Wang Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Daopeng Sheng
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi-Fan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou, 215009, PR China
| | - Zhao-Ying Yang
- Soochow College, Soochow University, Suzhou, 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Park J, Kim J, Hwang S, Oh D, Du YE, Nam SJ, Park HG, Lee MJ, Oh DC. Sadopeptins A and B, Sulfoxide- and Piperidone-Containing Cyclic Heptapeptides with Proteasome Inhibitory Activity from a Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:612-620. [PMID: 36921317 DOI: 10.1021/acs.jnatprod.2c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New sulfur-bearing natural products, sadopeptins A and B (1 and 2), were discovered from Streptomyces sp. YNK18 based on a targeted search using the characteristic isotopic signature of sulfur in mass spectrometry analysis. Compounds 1 and 2 were determined to be new cyclic heptapeptides, bearing methionine sulfoxide [Met(O)] and 3-amino-6-hydroxy-2-piperidone (Ahp), based on 1D and 2D NMR spectroscopy along with IR, UV, and MS. The configurations of sadopeptins A and B (1 and 2) were established via the analysis of the ROESY NMR correlation, oxidation, Marfey's method, and circular dichroism (CD) spectroscopy. The bioinformatics analysis of the full Streptomyces sp. YNK18 genome identified a nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster (BGC), and a putative biosynthetic pathway is proposed. Sadopeptins A and B displayed proteasome-inhibitory activity without affecting cellular autophagic flux.
Collapse
Affiliation(s)
- Jiyoon Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiseong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Daehyun Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Antioxidative Indenone and Benzophenone Derivatives from the Mangrove-Derived Fungus Cytospora heveae NSHSJ-2. Mar Drugs 2023; 21:md21030181. [PMID: 36976230 PMCID: PMC10057025 DOI: 10.3390/md21030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Seven new polyketides, including four indenone derivatives, cytoindenones A–C (1, 3–4), 3′-methoxycytoindenone A (2), a benzophenone derivative, cytorhizophin J (6), and a pair of tetralone enantiomers, (±)-4,6-dihydroxy-5-methoxy-α-tetralone (7), together with a known compound (5) were obtained from the endophytic fungus Cytospora heveae NSHSJ-2 isolated from the fresh stem of the mangrove plant Sonneratia caseolaris. Compound 3 represented the first natural indenone monomer substituted by two benzene moieties at C-2 and C-3. Their structures were determined by the analysis of 1D and 2D NMR, as well as mass spectroscopic data, and the absolute configurations of (±)-7 were determined on the basis of the observed specific rotation value compared with those of the tetralone derivatives previously reported. In bioactivity assays, compounds 1, 4–6 showed potent DPPH· scavenging activities, with EC50 values ranging from 9.5 to 16.6 µM, better than the positive control ascorbic acid (21.9 µM); compounds 2–3 also exhibited DPPH· scavenging activities comparable to ascorbic acid.
Collapse
|
9
|
Baranova AA, Zakalyukina YV, Ovcharenko AA, Korshun VA, Tyurin AP. Antibiotics from Insect-Associated Actinobacteria. BIOLOGY 2022; 11:1676. [PMID: 36421390 PMCID: PMC9687666 DOI: 10.3390/biology11111676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/10/2023]
Abstract
Actinobacteria are involved into multilateral relationships between insects, their food sources, infectious agents, etc. Antibiotics and related natural products play an essential role in such systems. The literature from the January 2016-August 2022 period devoted to insect-associated actinomycetes with antagonistic and/or enzyme-inhibiting activity was selected. Recent progress in multidisciplinary studies of insect-actinobacterial interactions mediated by antibiotics is summarized and discussed.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
| | - Anna A. Ovcharenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Higher Chemical College RAS, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
10
|
Yang R, Xie Q, Yan Q, Zhang X, Gao B. Palladium-Catalyzed Thiocarbonylation of Aryl Iodides with S-Aryl Thioformates via Thioester Transfer. Org Lett 2022; 24:7555-7559. [PMID: 36214733 DOI: 10.1021/acs.orglett.2c02953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we reported a novel approach to synthesize thioesters with S-aryl thioformates as thioester sources. The reaction proceeded at ambient temperature using widely available starting ingredients, wherein the thioester moiety was smoothly transferred to aryl iodides from S-aryl thioformates. A variety of substrates with various electronic natures were all tolerated under the reaction conditions to furnish desirable thioesters in ranges from moderate to excellent yields. The gram-scale reaction was also conducted, and there was virtually little change in chemical yield, indicating that large-scale synthesis of thioesters may be viable using this method.
Collapse
Affiliation(s)
- Ruiting Yang
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Qiumin Xie
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Qian Yan
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Xiuli Zhang
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Bao Gao
- School of Science, Anhui Agricultural University, Hefei, 230036, P. R. China
| |
Collapse
|
11
|
Wang X, Dong ZB. A Recent Progress for the Synthesis of Thioester Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Wang
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
12
|
Ziyaei Halimehjani A, Breit B. Rhodium-catalyzed regioselective addition of thioacids to terminal allenes: enantioselective access to branched allylic thioesters. Chem Commun (Camb) 2022; 58:1704-1707. [PMID: 35023518 DOI: 10.1039/d1cc06470c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhodium-catalyzed regio- and enantioselective hydrothiolation of terminal allenes with thioacids is reported for the atom-economic synthesis of chiral branched allylic thioesters. By using a rhodium(I) catalyst system, diversities of terminal allenes and thioacids afforded the corresponding branched thioesters in excellent regioselectivity, high yield, and good enantioselectivity. This method was also explored for Fmoc-protected aminothioacids for diastereoselective synthesis of the corresponding thioesters.
Collapse
Affiliation(s)
- A Ziyaei Halimehjani
- Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh Street, Tehran, Iran. .,Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| | - B Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albert Strasse 21, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2020. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1115-1134. [PMID: 34825847 DOI: 10.1080/10286020.2021.2004131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The new natural products reported in 2020 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2020 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan-Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Yu W, Han J, Fang D, Wang M, Liao J. Palladium-Catalyzed Linear Hydrothiocarbonylation of Unactivated Terminal Alkenes: Synthesis of Aliphatic Thioesters. Org Lett 2021; 23:2482-2487. [PMID: 33711895 DOI: 10.1021/acs.orglett.1c00406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Pd-catalyzed hydrothiocarbonylation of unactivated terminal alkenes is presented. According to this protocol, aliphatic thioesters were synthesized with exclusive linear selectivity under mild reaction conditions. Good to excellent yields (up to 91% yield), broad substrate scope, broad functional group tolerance, and utility of the method demonstrated the advantages of this protocol.
Collapse
Affiliation(s)
- Wangzhi Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian Han
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dongmei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Byun WS, Bae ES, Park SC, Kim WK, Shin J, Lee SK. Antitumor Activity of Asperphenin B by Induction of Apoptosis and Regulation of Glyceraldehyde-3-phosphate Dehydrogenase in Human Colorectal Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:683-693. [PMID: 33398999 DOI: 10.1021/acs.jnatprod.0c01155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is a common and intractable malignancy with a high mortality risk. Conventional chemotherapeutics are effective for patients with early stage CRC, but the majority of deaths of CRC patients are linked to acquired drug resistance or metastasis occurrence. Asperphenin B (1), a lipopeptidyl benzophenone isolated from a marine-derived Aspergillus sp. fungus, reportedly possesses antiproliferative activity against cancer cells. However, its antitumor activity and the underlying molecular mechanisms remain unexplored. In this study, 1 induced G2/M phase cell cycle arrest and subsequent apoptotic cell death and inhibited tumor growth in a xenograft model. The 1-induced G2/M phase arrest was associated with the regulation of checkpoint proteins, including Chk1/2 and Cdc25c. The 1-induced apoptosis was correlated with an upregulation of p53 and cleaved caspases and a downregulation of survivin. Further experiments revealed that 1-mediated suppression of migration and invasion of metastatic HCT116 cells was partially associated with the downregulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. The antimetastatic potential of 1 was also confirmed by E-cadherin upregulation and N-cadherin and Snail downregulation, which were in turn associated with the GAPDH regulation. These findings highlight the potential use of 1 as a novel candidate for treating metastatic CRC with the modulation of GAPDH function.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Jiang X, Wang G, Zheng Z, Yu X, Hong Y, Xia H, Yu C. Autocatalytic Synthesis of Thioesters via Thiocarbonylation of gem-Difluoroalkenes. Org Lett 2020; 22:9762-9766. [PMID: 33285069 DOI: 10.1021/acs.orglett.0c03860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a new method for the synthesis of acyethanethioates via thiocarbonylation of gem-difluoroalkenes with thiols. This reaction provides a new pathway to prepare thioesters under mild conditions without the use of any additives. Mechanistic studies revealed that in situ generated HF facilitated the C-F bond cleavage in an autocatalytic manner.
Collapse
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guan Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zicong Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xiaohui Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ye Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Haoqi Xia
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
17
|
Pentaminomycins C-E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium. Microorganisms 2020; 8:microorganisms8091390. [PMID: 32927831 PMCID: PMC7565604 DOI: 10.3390/microorganisms8091390] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Pentaminomycins C–E (1–3) were isolated from the culture of the Streptomyces sp. GG23 strain from the guts of the mealworm beetle, Tenebrio molitor. The structures of the pentaminomycins were determined to be cyclic pentapeptides containing a modified amino acid, N5-hydroxyarginine, based on 1D and 2D NMR and mass spectroscopic analyses. The absolute configurations of the amino acid residues were assigned using Marfey’s method and bioinformatics analysis of their nonribosomal peptide biosynthetic gene cluster (BGC). Detailed analysis of the BGC enabled us to propose that the structural variations in 1–3 originate from the low specificity of the adenylation domain in the nonribosomal peptide synthetase (NRPS) module 1, and indicate that macrocyclization can be catalyzed noncanonically by penicillin binding protein (PBP)-type TE. Furthermore, pentaminomycins C and D (1 and 2) showed significant autophagy-inducing activities and were cytoprotective against oxidative stress in vitro.
Collapse
|