1
|
Wang X, Lv R, Li X. Kinetic resolution of 1-(1-alkynyl)cyclopropyl ketones via gold-catalyzed divergent (4 + 4) cycloadditions: stereoselective access to furan fused eight-membered heterocycles. Chem Sci 2024; 15:9361-9368. [PMID: 38903218 PMCID: PMC11186327 DOI: 10.1039/d4sc02763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Chiral eight-membered heterocycles comprise a diverse array of natural products and bioactive compounds, yet accessing them poses significant challenges. Here we report a gold-catalyzed stereoselective (4 + 4) cycloaddition as a reliable and divergent strategy, enabling readily accessible precursors (anthranils and ortho-quinone methides) to be intercepted by in situ generated gold-furyl 1,4-dipoles, delivering previously inaccessible chiral furan/pyrrole-containing eight-membered heterocycles with good results (56 examples, all >20 : 1 dr, up to 99% ee). Moreover, we achieve a remarkably efficient kinetic resolution (KR) process (s factor up to 747). The scale-up synthesis and diversified transformations of cycloadducts highlight the synthetic potential of this protocol. Computational calculations provide an in-depth understanding of the stereoselective cycloaddition process.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- Suzhou Research Institute of Shandong University NO. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 China
| |
Collapse
|
2
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Guo M, Zhang P, Li EQ. Recent Advances in Palladium-Catalyzed [4 + n] Cycloaddition of Lactones, Benzoxazinanones, Allylic Carbonates, and Vinyloxetanes. Top Curr Chem (Cham) 2023; 381:33. [PMID: 37921912 DOI: 10.1007/s41061-023-00442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Palladium-catalyzed allylation cyclization reaction has recently emerged as an efficient and powerful synthetic platform for the construction of diverse and valuable carbo- and heterocycles. Thus the development of new allylic motifs for achieving this type of transformations in high reactivity and selectivity is of great importance. Generally, these substrates have been utilized as 1,3-, 1,4-, 1,5-, 1,6-dipoles in many reactions, which are applied to prepare highly functionalized products with complete control of chemo-, regio-, diastereo-, and enantioselectivity. In this review, we focus our attention on the development of palladium-catalyzed [4 + n] cycloaddition of allylic motifs and describe a comprehensive and impressive advances in this area. Meanwhile, the related mechanism and the application of these annulation strategies in natural product total synthesis will be highlighted in detail.
Collapse
Affiliation(s)
- Mengyan Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Panke Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Er-Qing Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
4
|
Rao HW, Zhao TL, Wang L, Deng HD, Zhang YP, You Y, Wang ZH, Zhao JQ, Yuan WC. Palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with sulfonamido-substituted acyclic allylic carbonates. Org Biomol Chem 2023; 21:8593-8602. [PMID: 37861421 DOI: 10.1039/d3ob01404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with aza-π-allylpalladium zwitterionic intermediates, in situ generated from sulfonamido-substituted allylic carbonates, is successfully developed. This method allows the formation of a series of structurally diverse 5-alkylated thiazolidinones and 2-piperidones under mild conditions in moderate to high yields (up to 99% yield).
Collapse
Affiliation(s)
- Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Tian-Lan Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Long Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Hong-Dan Deng
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
5
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
6
|
Du J, Li YF, Ding CH. Recent advances of Pd-p-allyl zwitterions in cycloaddition reactions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Yuan SP, Bao Q, Sun TJ, Zhao JQ, Wang ZH, You Y, Zhang YP, Zhou MQ, Yuan WC. Catalytic Enantioselective α-Allylation of Deconjugated Butenolides with Aza-π-allylpalladium 1,4-Dipoles: Access to Optically Pure 2-Piperidones Bearing an All-Carbon Quaternary Stereocenter. Org Lett 2022; 24:8348-8353. [DOI: 10.1021/acs.orglett.2c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shu-Pei Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qing Bao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Ting-Jia Sun
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
8
|
Wang J, Li YF, Du J, Huang S, Ding CH, Wong HNC, Hou XL. Palladium-Catalyzed Asymmetric (3 + 2) Cycloaddition of Vinyl Epoxides with Substituted Propiolates. Enantioselective Formation of 2,3,4-Trisubstituted 2,3-Dihydrofurans. Org Lett 2022; 24:1561-1565. [DOI: 10.1021/acs.orglett.2c00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Wang
- Henan Normal University, 46 East Jianshe Road, Xinxiang, Henan Province 453007 China
| | - Yun-Fan Li
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Juan Du
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of The Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shuai Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of The Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Henry N. C. Wong
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang
District, Shenzhen 518172, China
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of The Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
9
|
You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Advances in Palladium‐Catalyzed Decarboxylative Cycloadditions of Cyclic Carbonates, Carbamates and Lactones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Qun Li
- Chengdu University of Technology College of Materials and Chemistry & Chmical Engineering Chengdu CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
10
|
Gao C, Zhang T, Li X, Wu JD, Liu J. Asymmetric Decarboxylative [3+2] Cycloaddition for the Diastereo- and Enantioselective Synthesis of Spiro[2.4]heptanes via Cyclopropanation. Org Chem Front 2022. [DOI: 10.1039/d2qo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric cycloaddition reaction has emerged as one of the powful and reliable strategies for the construction of enantioenriched molecules, especially those with polycyclic frameworks. Herein, we report the asymmetric decarboxylative...
Collapse
|
11
|
Zhang J, Chen Y, Wang Q, Shen J, Liu Y, Deng W. Transition Metal-Catalyzed Asymmetric Cyclizations Involving Allyl or Propargyl Heteroatom-Dipole Precursors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Yang Z, Wei Y, Yang C, Li Y, Ding C, Xu B. Palladium‐Catalyzed [3+2] Cycloaddition of Activated Butadienylcyclopropanes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi‐Xiong Yang
- Department of Chemistry Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Shanghai Engineering Research Center of Organ Repair Innovative Drug Research Center Qianweichang College School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Yu‐Qing Wei
- Department of Chemistry Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Shanghai Engineering Research Center of Organ Repair Innovative Drug Research Center Qianweichang College School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Cun Yang
- Department of Chemistry Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Shanghai Engineering Research Center of Organ Repair Innovative Drug Research Center Qianweichang College School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Yun‐Fan Li
- Department of Chemistry Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Shanghai Engineering Research Center of Organ Repair Innovative Drug Research Center Qianweichang College School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Chang‐Hua Ding
- Department of Chemistry Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Shanghai Engineering Research Center of Organ Repair Innovative Drug Research Center Qianweichang College School of Medicine Shanghai University Shanghai 200444 P. R. China
| | - Bin Xu
- Department of Chemistry Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Shanghai Engineering Research Center of Organ Repair Innovative Drug Research Center Qianweichang College School of Medicine Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
13
|
Galeev AR, Moroz AA, Dmitriev MV, Maslivets AN. Cycloaddition of Huisgen 1,4-dipoles: synthesis and rapid epimerization of functionalized spiropyrido[2,1- b][1,3]oxazine-pyrroles and related products. RSC Adv 2021; 12:578-587. [PMID: 35424489 PMCID: PMC8694240 DOI: 10.1039/d1ra08384h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
1,4-Dipolar cycloaddition has emerged as a powerful tool for the synthesis of various cyclic compounds. In the present work, 1H-pyrrole-2,3-diones are proposed as new dipolarophiles for 1,4-dipolar cycloaddition. Their [4 + 2] cycloaddition with dipoles generated from dimethyl acetylenedicarboxylate and pyridine was found to proceed regioselectively affording spiro[pyrido[2,1-b][1,3]oxazine-2,3'-pyrroles] as diastereomeric mixtures which exist in rapid equilibrium in solution. It was established that this phenomenon of rapid epimerization is a characteristic of other similar spiropyrido[2,1-b][1,3]oxazines and even related spiroquinolizines, which was demonstrated by the investigation of related products of previously reported, and reproduced in this work, 1,4-dipolar cycloaddition reactions.
Collapse
Affiliation(s)
- Andrew R Galeev
- Department of Chemistry, Perm State University ul. Bukireva 15 Perm 614068 Russia
| | - Anna A Moroz
- Department of Chemistry, Perm State University ul. Bukireva 15 Perm 614068 Russia
| | - Maksim V Dmitriev
- Department of Chemistry, Perm State University ul. Bukireva 15 Perm 614068 Russia
| | - Andrey N Maslivets
- Department of Chemistry, Perm State University ul. Bukireva 15 Perm 614068 Russia
| |
Collapse
|
14
|
Chen Z, Chen ZC, Du W, Chen YC. Asymmetric [4 + 3] Annulations for Constructing Divergent Oxepane Frameworks via Cooperative Tertiary Amine/Transition Metal Catalysis. Org Lett 2021; 23:8559-8564. [PMID: 34699235 DOI: 10.1021/acs.orglett.1c03279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report asymmetric [4 + 3] annulations between isatin-derived Morita-Baylis-Hillman carbonates and two types of vinyl carbonates synergistically catalyzed by tertiary amines and transition metals, through chemoselective assemblies of in situ formed allylic ylides and metal-containing 1,4-dipoles. A range of oxepane frameworks are generally constructed in moderate to good yields with high stereocontrol. Moreover, all four diastereomers for the products bearing vicinal stereocenters are accessible by tuning tertiary amine and metal catalysts.
Collapse
Affiliation(s)
- Zhi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
15
|
Wu HH, Fan XZ, Tang Z, Zhang H, Cai LY, Bi XF, Zhao HW. Palladium-Catalyzed Formal (5 + 6) Cycloaddition of Vinylethylene Carbonates with Isatoic Anhydrides for the Synthesis of Medium-Sized N, O-Containing Heterocycles. Org Lett 2021; 23:2802-2806. [PMID: 33739841 DOI: 10.1021/acs.orglett.1c00729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under the reaction conditions of Pd(PPh3)4 (2.5 mol %) and PPh3 (10 mol %) in EtOAc at 60 °C, the formal (5 + 6) cycloaddition of vinylethylene carbonates with isatoic anhydrides proceeded smoothly and furnished medium-sized N,O-containing heterocycles in reasonable chemical yields. The chemical structures of the title products were clearly identified by X-ray diffraction analysis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Xiao-Zu Fan
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Zhe Tang
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Heng Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Lu-Yu Cai
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Xiao-Fan Bi
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Hong-Wu Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| |
Collapse
|
16
|
Gao C, Wang X, Liu J, Li X. Highly Diastereo- and Enantioselective Synthesis of Tetrahydrobenzo[b]azocines via Palladium-Catalyzed [4 + 4] Cycloaddition. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Can Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jitian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Suzhou Institute of Shandong University, no. 388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Yang C, Yang ZX, Ding CH, Xu B, Hou XL. Development of Dipolarophiles for Catalytic Asymmetric Cycloadditions through Pd-π-Allyl Zwitterions. CHEM REC 2021; 21:1442-1454. [PMID: 33570239 DOI: 10.1002/tcr.202000177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/22/2021] [Indexed: 02/03/2023]
Abstract
The development of new and efficient methodology for the construction of optically active molecules is of great interest in both synthetic organic and medicinal chemistry fields. To this end, the personal account summarizes our studies on the development of electron-deficient alkenes, allenes, and alkynes containing single activator as new dipolarophiles for Pd-catalyzed asymmetric cycloaddition reactions. These new dipolarophiles can participate in Pd-catalyzed asymmetric [3+2] and [4+2] cycloadditions through Pd-π-allyl 1,3- and 1,4-zwitterions in-situ generated by the reaction of Pd(0) catalyst with vinyl aziridines, vinyl epoxides, vinyl cyclopropanes, 4-vinyl-1,3-dioxan-2-ones, and vinyl benzoxazinanones. These [3+2] and [4+2] cycloadditions provide efficient approaches to a wide range of enantiomerically enriched five- and six-membered ring compounds containing contiguous chiral centers with high to excellent chemo-, diastereo-, and enantioselectivities. The utilities of these protocols are demonstrated by transformation of the cycloadducts into other useful chiral building blocks. DFT calculations reveal the dissimilar reactivity of different electron deficient alkenes and rationalize the mechanism and stereo-control of the reaction. A Pd-catalyzed inverse [3+2] cycloaddition is disclosed.
Collapse
Affiliation(s)
- Cun Yang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Zhi-Xiong Yang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, P. R. of China
| |
Collapse
|
18
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Hu H, Xu WH, Kang WX, Sun W, Sun R, Wei XH, Sun M. Co( iii)-Catalyzed stereospecific synthesis of ( E)-homoallylic alcohols with 4-vinyl-1,3-dioxan-2-ones: late-stage C–H homoallylation of indole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00529d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An Co(iii)-catalyzed stereoselective C–H homoallylation reaction to access (E)-homoallylic alcohols was developed. This protocol provides a powerful approach for the late-stage C–H homoallylation of indole-based molecules.
Collapse
Affiliation(s)
- Hong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Wen-Hua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Wu-Xiang Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Rui Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- China
| | - Xiao-Hong Wei
- College of Chemical Engineering
- Northwest Minzu University
- Lanzhou 730030
- China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- China
| |
Collapse
|
20
|
Trost BM, Jiao Z. Palladium-Catalyzed Enantioselective Cycloaddition of Carbonylogous 1,4-Dipoles: Efficient Access to Chiral Cyclohexanones. J Am Chem Soc 2020; 142:21645-21650. [DOI: 10.1021/jacs.0c11535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Zhiwei Jiao
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
21
|
Trost BM, Jiao Z, Liu Y, Min C, Hung CIJ. Palladium-Catalyzed Enantioselective Cycloadditions of Aliphatic 1,4-Dipoles: Access to Chiral Cyclohexanes and Spiro [2.4] heptanes. J Am Chem Soc 2020; 142:18628-18636. [DOI: 10.1021/jacs.0c08348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Zhiwei Jiao
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Ying Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Chang Min
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Chao-I. Joey Hung
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|