1
|
Kawazoe T, Yanai H, Hagiyama Y, Funabiki K, Matsumoto T. Diverse Synthesis of 2H-Isoindole-Based Polycyclic Aromatic Compounds. Chemistry 2023; 29:e202301703. [PMID: 37493337 DOI: 10.1002/chem.202301703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/27/2023]
Abstract
1,3-Disubstituted N-aryl-2H-isoindoles have been synthesized by a cascade reaction of divinyl ethers, which are derived from easily available 4-bromoisocoumarins, with substituted anilines in HFIP. This cascade reaction consists of a ring-opening step through addition-elimination mechanism and the following 5-exo-tet type ring-closing step via the intramolecular nucleophilic substitution reaction. Thus obtained 2H-isoindoles have been derivatized to high-order nitrogen-containing polycycles including less accessible benzo[a]ullazines.
Collapse
Affiliation(s)
- Teru Kawazoe
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuto Hagiyama
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
2
|
Sahoo S, Rao MA, Pal S. An Aldehyde-Driven, Fe(0)-Mediated, One-Pot Reductive Cyclization: Direct Access to 5,6-Dihydro-quinazolino[4,3- b]quinazolin-8-ones and Photophysical Study. J Org Chem 2023. [PMID: 37471271 DOI: 10.1021/acs.joc.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A short, proficient, and regioselective synthesis of biheterocyclic 5,6-dihydro-quinazolino[4,3-b]quinazolin-8-ones has been revealed via an Fe(0)-powder-mediated, one-pot reductive cyclization protocol. Mechanistic investigation proved that water acts as a source of hydrogen for the reduction of the nitro group and the reaction rate was accelerated by an aldehyde. The designed transformation works under aerobic conditions, providing a series of bio-inspired molecular scaffolds. In addition, the photophysical study showed blue fluorescence emission with a good fluorescence quantum yield.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Manthri Atchuta Rao
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
3
|
Wei D, Lu HY, Miao HZ, Feng CG, Lin GQ, Liu Y. Pd-catalyzed intermolecular consecutive double Heck reaction "on water" under air: facile synthesis of substituted indenes. RSC Adv 2023; 13:19312-19316. [PMID: 37377870 PMCID: PMC10291873 DOI: 10.1039/d3ra03510g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
An efficient and environmentally benign method for the preparation of substituted indene derivatives has been developed by using water as the sole solvent. This reaction proceeded under air, tolerated a wide range of functional-groups and was easily scaled up. Bioactive natural products like indriline were synthesized via the developed protocol. Preliminary results demonstrate that the enantioselective variant can also be achieved.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200092 China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Yu Lu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Han-Zhe Miao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| |
Collapse
|
4
|
de Ceuninck van Capelle LA, Wales SM, Macdonald JM, Kruger M, Richardson C, Gardiner MG, Hyland CJT. Synthesis and Atropisomeric Properties of Benzoazepine-Fused Isoindoles. J Org Chem 2023. [PMID: 37326851 DOI: 10.1021/acs.joc.3c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atropisomeric, bench-stable benzoazepine-fused isoindoles were synthesized via oxidation from isoindoline precursors. Using the isoindoles 5d-f as models, the stereochemistry and conformational folding of the systems were examined. Chiral UHPLC was used to analyze the rate of racemization and calculate the Gibbs free energy of enantiomerization (ΔG‡Enant). X-ray crystallography, 1H NMR spectroscopy, and DFT calculations were used to elucidate the three axes of chirality and clarify the structural factors contributing to ΔG‡Enant. Tandem rotation around the axes of chirality precludes the formation of diastereomers, with rotational restriction of the Caryl-Nsulfonamide bond determined as the moderator of atropisomeric stability in the system, affected primarily by steric hindrance as well as by π-stacking interactions facilitated by the folded conformation of the sulfonamide over the isoindole moiety.
Collapse
Affiliation(s)
- Lillian A de Ceuninck van Capelle
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Steven M Wales
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - James M Macdonald
- CSIRO Manufacturing, Biomedical Manufacturing Program, Bag 10, Clayton South, Melbourne, Victoria 3168, Australia
| | - Megan Kruger
- CSIRO Manufacturing, Materials Characterisation and Modelling Program, Bag 10, Clayton South, Melbourne, Victoria 3168, Australia
| | - Christopher Richardson
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Michael G Gardiner
- School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
- Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher J T Hyland
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Tang WX, Chen KQ, Sun DQ, Chen XY. Photoinduced halogen-bonding enabled synthesis of oxindoles and isoindolinones from aryl iodides. Org Biomol Chem 2023; 21:715-718. [PMID: 36412116 DOI: 10.1039/d2ob01818g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the use of halogen bonding (XB) for the generation of aryl radicals from aryl halides under blue light irradiation and applied it in radical generation/1,5-hydrogen-atom transfer/radical cyclization cascade reactions for the synthesis of oxindoles and isoindolinones. On the basis of experimental studies, we propose that DBU can serve as a suitable XB acceptor with aryl halides for the formation of a photoactive electron donor and acceptor complex.
Collapse
Affiliation(s)
- Wen-Xin Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Kun-Quan Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - De-Qun Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China. .,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, P. R. China
| |
Collapse
|
6
|
Cortes Vazquez J, Alharbi WS, Davis J, Moore A, Nesterov VN, Cundari TR, Wang H, Luo W. Three Component Cascade Reaction of Cyclohexanones, Aryl Amines, and Benzoylmethylene Malonates: Cooperative Enamine-Brønsted Acid Approach to Tetrahydroindoles. ACS OMEGA 2022; 7:45341-45346. [PMID: 36530259 PMCID: PMC9753174 DOI: 10.1021/acsomega.2c05909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Waad S. Alharbi
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Alexia Moore
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Vladimir N. Nesterov
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Hong Wang
- Department
of Chemistry, University of North Texas, 1508 W Mulberry Street, Denton, Texas 76203, United States
| | - Weiwei Luo
- School
of Chemistry and Chemical Engineering, Changsha
University of Science and Technology, Changsha 410114, China
| |
Collapse
|
7
|
Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches. Molecules 2022; 27:molecules27196381. [PMID: 36234926 PMCID: PMC9571537 DOI: 10.3390/molecules27196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
A cascade 6-endo-dig cyclization reaction was developed for the switchable synthesis of halogen and non-halogen-functionalized pyrazolo[3,4-b]pyridines from 5-aminopyrazoles and alkynyl aldehydes via C≡C bond activation with silver, iodine, or NBS. In addition to its wide substrate scope, the reaction showed good functional group tolerance as well as excellent regional selectivity. This new protocol manipulated three natural products, and the arylation, alkynylation, alkenylation, and selenization of iodine-functionalized products. These reactions demonstrated the potential applications of this new method.
Collapse
|
8
|
Tang Z, Zhang F, Yao T, Liu XS, Liu Y, Liu L. Dearomative Iodocyclization of N-( o-Alkynyl)aryl Isoindole. J Org Chem 2022; 87:7531-7535. [PMID: 35588537 DOI: 10.1021/acs.joc.2c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a dearomative iodocyclization of N-(o-alkynyl)aryl isoindole here, which affords various biologically active benzoindoleazine skeletons containing alkenyl iodine. The products can further undergo cycloaddition or coupling reactions to afford a series of highly functionalized N-fused polycyclic scaffolds.
Collapse
Affiliation(s)
- Zhiqiong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Fang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tengfei Yao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xun-Shen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuanyuan Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
Sayahi MH, Toosibashi M, Bahmaei M, Lijan H, Ma'Mani L, Mahdavi M, Bahadorikhalili S. Pd@Py2PZ@MSN as a Novel and Efficient Catalyst for C–C Bond Formation Reactions. Front Chem 2022; 10:838294. [PMID: 35433633 PMCID: PMC9008749 DOI: 10.3389/fchem.2022.838294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel catalyst is introduced based on the immobilization of palladium onto dipyrido (3,2-a:2′,3′-c) phenazine–modified mesoporous silica nanoparticles. The dipyrido (3,2-a:2′,3′-c) phenazine (Py2PZ) ligand is synthesized in a simple method from the reaction of 1,10-phenanthroline-5,6-dione and 3,4-diaminobenzoic acid as starting materials. The ligand is used to functionalize mesoporous silica nanoparticles (MSNs) and modify their surface chemistry for the immobilization of palladium. The palladium-immobilized dipyrido (3,2-a:2′,3′-c) phenazine–modified mesoporous silica nanoparticles (Pd@Py2PZ@MSNs) are synthesized and characterized by several characterization techniques, including TEM, SEM, FT-IR, TGA, ICP, XRD, and EDS analyses. After the careful characterization of Pd@Py2PZ@MSNs, the activity and efficiency of this catalyst is examined in carbon–carbon bond formation reactions. The results are advantageous in water and the products are obtained in high isolated yields. In addition, the catalyst showed very good reusability and did not show significant loss in activity after 10 sequential runs.
Collapse
Affiliation(s)
- Mohammad Hosein Sayahi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- *Correspondence: Mohammad Hosein Sayahi, ; Saeed Bahadorikhalili,
| | | | - Mehdi Bahmaei
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Hosein Lijan
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Leila Ma'Mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- *Correspondence: Mohammad Hosein Sayahi, ; Saeed Bahadorikhalili,
| |
Collapse
|
10
|
Wang G, Wei M, Liu T, Jin W, Zhang Y, Wang B, Xia Y, Liu C. Palladium‐catalyzed Stereoselective Intramolecular Heck Dearomative Silylation of Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Weiwei Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences CHINA
| | | | | | - Yu Xia
- Xinjiang University CHINA
| | | |
Collapse
|
11
|
Han XQ, Wang L, Yang P, Liu JY, Xu WY, Zheng C, Liang RX, You SL, Zhang J, Jia YX. Enantioselective Dearomative Mizoroki–Heck Reaction of Naphthalenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Qing Han
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Lei Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Ping Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jing-Yuan Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Wei-Yan Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road No. 18, Hangzhou 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
12
|
Malasala S, Polomoni A, Chelli SM, Kar S, Madhavi YV, Nanduri S. A microwave-assisted copper-mediated tandem approach for fused quinazoline derivatives. Org Biomol Chem 2021; 19:1854-1859. [PMID: 33565553 DOI: 10.1039/d0ob02312d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A method for the microwave-assisted copper-mediated oxidative coupling reaction of different aldehydes and quinazolines/benzimidazoles has been developed for the synthesis of fused-polycyclic systems via new C-N bond formation. The current methodology involves the use of environmentally benign NH4OAc as the amine source in the presence of 2-propanol as the solvent. This novel tandem reaction approach offers a rapid and straightforward access to complex fused quinazoline derivatives in an efficient manner.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Anusha Polomoni
- Department of Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sai Manohar Chelli
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Swayamsidda Kar
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, Andhra Pradesh 515 134, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
13
|
Liang R, Song L, Lu J, Xu W, Ding C, Jia Y. Palladium‐Catalyzed Enantioselective Heteroarenyne Cycloisomerization Reaction. Angew Chem Int Ed Engl 2021; 60:7412-7417. [DOI: 10.1002/anie.202014796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Ren‐Xiao Liang
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Ling‐Jie Song
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Jin‐Bo Lu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Wei‐Yan Xu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Chao Ding
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
14
|
Liang R, Song L, Lu J, Xu W, Ding C, Jia Y. Palladium‐Catalyzed Enantioselective Heteroarenyne Cycloisomerization Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ren‐Xiao Liang
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Ling‐Jie Song
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Jin‐Bo Lu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Wei‐Yan Xu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Chao Ding
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|