1
|
Awasthi A, Tiwari K, Yadav P, Bhowmick S, Tiwari DK. Synthesis of 4-styrylquinolines via direct oxidative C3-alkenylation of anthranils under Pd(II) catalysis. Chem Commun (Camb) 2024; 60:2054-2057. [PMID: 38288529 DOI: 10.1039/d3cc05790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The palladium-catalyzed oxidative C3-alkenylation of anthranils (2,1-benzisoxazoles) with various styrenes has been successfully achieved. The C3-alkenylated anthranils were subsequently utilized in a [4+2]-cycloaddition with in situ generated α,β-unsaturated ketones leading to the synthesis of a diverse range of olefin-containing quinolines. Notably, this reaction exclusively yielded mono-alkenylated products with E-selectivity. The optimized catalytic conditions were compatible with a wide variety of substituted olefins and anthranils, forming various C3-alkenylated anthranils with good yields. To showcase the application of the present methodology, the C3-alkenylated anthranils have been employed as synthons to access a wide range of substituted quinolines.
Collapse
Affiliation(s)
- Annapurna Awasthi
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Khushboo Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| | - Pushpendra Yadav
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Suman Bhowmick
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| | - Dharmendra Kumar Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. dktiwari.@cbmr.res.in
| |
Collapse
|
2
|
Antolinc K, Brodnik H, Grošelj U, Štefane B, Petek N, Svete J. Catalytic Photoredox C-H Arylation of 4-Oxo-4 H-pyrido[1,2- a]pyrimidine-3-diazonium Tetrafluoroborates and Related Heteroaryl Diazonium Salts. J Org Chem 2023; 88:13934-13945. [PMID: 37676813 PMCID: PMC10563132 DOI: 10.1021/acs.joc.3c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/09/2023]
Abstract
Irradiation of mixtures of title diazonium salts and heteroarenes with green light (510 nm) in the presence of eosin Y disodium salt (EY-Na2) as a photocatalyst furnished the corresponding arylation products in 8-63% yields. The proposed photocatalytic cycle is analogous to that proposed previously for closely related photoredox C-H arylations with aryl diazonium salts as aryl radical sources. This method has a broad substrate scope and represents a metal-free alternative for the synthesis of 3-heteroaryl-substituted 4H-quinolizin-4-ones and azino- and azolo-fused pyrimidones with a bridgehead nitrogen atom.
Collapse
Affiliation(s)
- Kris Antolinc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Zhao Y, Gao Y, Xie Z, Liao S, Huang J, Huo Y, Chen Q, Li X, Hu XQ. Tf 2O-Promoted Chemoselective C3 Functionalization of Anthranils with Phenols and Thiophenols. J Org Chem 2023. [PMID: 37400425 DOI: 10.1021/acs.joc.3c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Different chemoselectivities of phenols and thiophenols were observed in a Tf2O-promoted C3 functionalization of simple anthranils. The reaction of phenols and anthranils gives 3-aryl anthranils via a C-C bond formation, whereas thiophenols afford 3-thio anthranils through a C-S bond formation. Both reactions have a broad substrate scope and tolerate a wide range of functional groups, affording the corresponding products with specific chemoselectivity.
Collapse
Affiliation(s)
- Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Zhongke Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuwei Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiebin Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
4
|
Swarnkar N, Yadav RK, Singh S, Shahin R, Shukla RK, Tripathi SK, Dwivedi DK, Nath S, Singh C, Baeg JO. Highly selective in-situ prepared g-C3N4/P-B composite photocatalyst for direct C-H bond arylation and NADH regeneration cofactor under solar light. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
6
|
Chen L, Wang Z, Liu H, Li X, Wang B. tert-Butyl nitrite triggered radical cascade reaction for synthesizing isoxazoles by a one-pot multicomponent strategy. Chem Commun (Camb) 2022; 58:9152-9155. [PMID: 35894608 DOI: 10.1039/d2cc02823a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metal-free radical cyclization/dehydrogenation cascade of alkenes with aldehydes has been developed for the synthesis of 3,5-disubstituted isoxazoles in a one-pot system. This protocol features excellent functional group tolerance and operational simplicity, and is easily scaled up. The radical process is well supported by TEMPO-adducts and the intermediate β-carbonyl ketoxime.
Collapse
Affiliation(s)
- Leijing Chen
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Zhen Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Hui Liu
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Xinyue Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China.
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, P. R. China. .,Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230038, P. R. China
| |
Collapse
|
7
|
Recent advances of visible-light photocatalysis in the functionalization of organic compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Gao Y, Yang S, She M, Nie J, Huo Y, Chen Q, Li X, Hu XQ. Practical Synthesis of 3-Aryl Anthranils via an Electrophilic Aromatic Substitution Strategy. Chem Sci 2022; 13:2105-2114. [PMID: 35308846 PMCID: PMC8849043 DOI: 10.1039/d1sc06565c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
We report a practical route for the synthesis of valuable 3-aryl anthranils from readily available anthranils and simple arenes by using the classical electrophilic aromatic substitution (EAS) strategy. This transformation goes through an electrophilic substitution and rearomatisation sequence by employing Tf2O as an effective activator. A wide range of arenes were compatible in this transformation, delivering various structurally diversified 3-aryl anthranils in good yields and high regioselectivity. In addition, a variety of readily available feedstocks such as olefins, alkenyl triflates, silyl enolethers, carbonyl compounds, thiophenols and thiols could also participate in the reaction to achieve the C3 alkenylation, alkylation and thioetherification of anthranils. Of note, the synthesized 3-aryl anthranils proved to be a highly robust platform to access a series of biologically active compounds, drug derivatives and organic optoelectronic materials. A practical route for the synthesis of valuable 3-aryl anthranils from readily available anthranils and simple arenes has been achieved through an electrophilic substitution and rearomatization sequence by employing Tf2O as an effective activator.![]()
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Simin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Minwei She
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
9
|
Wei B, Qin JH, Yang YZ, Xie YX, Ouyang XH, Song RJ. Electrochemical radical C(sp3)–H arylation of xanthenes with electron-rich arenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01714d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient electrochemical C(sp3)–H arylation of xanthenes using a carbon anode and platinum cathode as the electrodes is disclosed.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong-Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ye-Xiang Xie
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
10
|
Uçar S, Daştan A. Recent Advances in the Transition-Metal-Free Arylation of Heteroarenes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1543-3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractTransition-metal-free arylation reactions have attracted considerable attention for economic and environmental reasons over the past 40 years. In recent years, much effort has been made to develop efficient transition-metal-free approaches for the arylation of heteroarenes. Covering the literature from 2015 to early 2021, this review aims to provide a thorough overview of the synthetic and mechanistic aspects of these atom-economical and environmentally benign reactions.1 Introduction2 Arylation of Pre-functionalized Heteroarenes2.1 Arylation of Heteroaryl Halides2.2 Decarboxylative Arylation of Heteroarenes3 Direct C–H Arylation of Heteroarenes3.1 C(sp2)–H Arylation3.2 C(sp3)–H Arylation4 N-Arylation of Heteroarenes5 Summary and Outlook
Collapse
|
11
|
Garia A, Grover J, Jain N. Metal‐Free Synthesis of Anthranils by PhIO Mediated Heterocyclization of
ortho
‐Carbonyl Anilines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alankrita Garia
- Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Jatin Grover
- Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| | - Nidhi Jain
- Department of Chemistry Indian Institute of Technology New Delhi 110016 India
| |
Collapse
|
12
|
Bosveli A, Montagnon T, Kalaitzakis D, Vassilikogiannakis G. Eosin: a versatile organic dye whose synthetic uses keep expanding. Org Biomol Chem 2021; 19:3303-3317. [PMID: 33899893 DOI: 10.1039/d1ob00301a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic dyes, which absorb light in the visible region of the electromagnetic spectrum, offer a lower cost, greener alternative to precious metals in photocatalysis. In this context, the organic dye eosin's uses are currently expanding at a significant rate. For a long time, its action as an energy transfer agent dominated, more recently, however, there has been a growing interest in its potential as an electron transfer agent. In this short review, we highlight some recent (from 2016 onwards) contributions to the field with a focus on the breadth of the reactions eosin can catalyse.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | | |
Collapse
|
13
|
Eosin Y as a direct hydrogen-atom transfer photocatalyst for the C3-H acylation of quinoxalin-2(1H)-ones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Zhang X, Mei Y, Li Y, Hu J, Huang D, Bi Y. Visible‐Light‐Mediated Functionalization of Aryl Diazonium Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yaoyao Mei
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yangyang Li
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Jingang Hu
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yicheng Bi
- Qingdao University of Science & Technology
| |
Collapse
|
15
|
Cheng H, Lam T, Liu Y, Tang Z, Che C. Photoinduced Hydroarylation and Cyclization of Alkenes with Luminescent Platinum(II) Complexes. Angew Chem Int Ed Engl 2020; 60:1383-1389. [DOI: 10.1002/anie.202011841] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hanchao Cheng
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
- Hefei National Laboratory for Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Tsz‐Lung Lam
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Zhou Tang
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chi‐Ming Che
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong P. R. China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 P. R. China
| |
Collapse
|
16
|
Cheng H, Lam T, Liu Y, Tang Z, Che C. Photoinduced Hydroarylation and Cyclization of Alkenes with Luminescent Platinum(II) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hanchao Cheng
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
- Hefei National Laboratory for Physical Sciences at Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Tsz‐Lung Lam
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Zhou Tang
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Chi‐Ming Che
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong P. R. China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 P. R. China
| |
Collapse
|