1
|
Huang J, Liang Y, Sun S, Zhang R, Miao Z. Silver-Catalyzed Tandem Cycloisomerization/[5 + 2] Cycloaddition of 3-Cyclopropylideneprop-2-en-1-ones with Oxidopyrylium Ylides to Form Bibridged Benzocycloheptanones. J Org Chem 2023. [PMID: 37364091 DOI: 10.1021/acs.joc.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Herein, we report a mild, one-pot method for silver-catalyzed tandem cycloisomerization/[5 + 2] cycloaddition reactions between readily accessible cyclopropyl-tethered allenyl ketones and benzopyranone-derived oxidopyrylium ylides. The reactions proceed via a cyclobutene-fused furan intermediate generated in situ by a cycloisomerization/1,2-carbene transfer/ring-expansion cascade. This method, which features an unprecedented formal [5 + 2] cycloaddition, delivers good to excellent yields of structurally complex bibridged benzocycloheptanones bearing a strained cyclobutane ring and an O-bridged ring.
Collapse
Affiliation(s)
- Jing Huang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Yushuang Liang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Shengnan Sun
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Ruilong Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Zhiwei Miao
- State Key Laboratory, College of Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
2
|
Naeini AA, Ziegelmeier AA, Chain WJ. Recent Developments with Icetexane Natural Products. Chem Biodivers 2022; 19:e202200793. [PMID: 36215180 PMCID: PMC11067433 DOI: 10.1002/cbdv.202200793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Icetexane diterpenoids are a diverse family of natural products sourced from several species of terrestrial plants. Icetexanes exhibit a broad array of biological activities and together with their complex 6-7-6 tricyclic scaffolds, they have piqued the interest of synthetic organic chemists, natural products chemists, and biological investigators over the past four decades and were reviewed 13 years ago. This review summarizes icetexane natural products isolated since 2009, provides an overview of new synthetic approaches to the icetexane problem, and proposes an additional classification of icetexanes based on novel structures that are unlike previously isolated materials.
Collapse
Affiliation(s)
- Ali Amiri Naeini
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexandre A Ziegelmeier
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
3
|
Kang J, Quynh Le T, Oh CH. Recent advances in abietane/icetexane synthesis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Abietane derived diterpenoids as Cav3.1 antagonists from Salvia digitaloides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Harry NA, Ujwaldev SM. Recent advances in [5+2] cycloadditions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220510152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The existence of a seven-membered cyclic core in several natural products and biomolecules vitalized the research on its synthesis. [5+2] cycloaddition has become a promising strategy for the construction of seven-membered ring systems by the formation of carbon-carbon bonds in a single step, with strong regioselectivity and stereoselectivity. This review mainly focuses on recent developments in the area of [5+2] cycloaddition since 2019. Total synthesis of natural products involving [5+2] cycloaddition as key step leading to heptacyclic core is also discussed. Synthesis of fused and bridged ring systems via the reactions involving inter and intramolecular [5+2] cycloadditions like oxidopyrylium-mediated [5+2] cycloadditions, [5+2] cycloadditions of vinyl cyclopropanes (VCPs), vinyl phenols, etc is explained in the review with the latest examples. This review provides a useful guide for researchers exploring this powerful strategy to create more elegant heptacycles in their future research.
Collapse
|
6
|
Xing S, Wang Y, Jin C, Shi S, Zhang Y, Liao Z, Wang K, Zhu B. Construction of Bridged Aza- and Oxa-[ n.2.1] Skeletons via an Intramolecular Formal [3+2] Cycloaddition of Aziridines and Epoxides with Electron-Deficient Alkenes. J Org Chem 2022; 87:6426-6431. [PMID: 35439001 DOI: 10.1021/acs.joc.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intramolecular formal [3+2] cycloaddition of activated aziridines and epoxides with electron-deficient alkene has been developed for the general and efficient construction of bridged aza- and oxa-[n.2.1] (n = 3 or 4) skeletons. This strategy can be efficiently promoted by lithium iodide. To demonstrate its potential, the intramolecular formal [3+2] cycloaddition was used to access the important intermediate of homoepiboxidine.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Changkun Jin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Shaochen Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yihui Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Ziya Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
7
|
Oh CH, Le TQ, Lee J. Total synthesis of Icetexanes Diterpenoids: (±)-Rosmaridiphenol, (±)-Pisiferin, (±)-Barbatusol from Abitane. Synlett 2022. [DOI: 10.1055/a-1801-4344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report the rearrangement of abitane core 3 with trifluoromethanesulfonic anhydride in pyridine afforded the icetexane core 4, which was key intermediate for total synthesis of structurally intriguing and biologically active compounds (±)-barbatusol, (±)-rosmaridiphenol and (±)-pisiferin.
Collapse
Affiliation(s)
- Chang Ho Oh
- Chemistry, Hanyang University - Seoul Campus, Seoul, Korea (the Republic of)
| | - Thuy Quynh Le
- Chemistry, Hanyang University - Seoul Campus, Seongdong-gu, Korea (the Republic of)
| | - JuHui Lee
- Chemistry, Hanyang University - Seoul Campus, Seongdong-gu, Korea (the Republic of)
| |
Collapse
|
8
|
Márquez-Cadena MA, Zhang W, Tong R. Synthetic Studies toward the Berkeleyacetal Core Architecture. Org Lett 2021; 23:9227-9231. [PMID: 34780201 DOI: 10.1021/acs.orglett.1c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Berkeleyacetals are structurally complex natural products that have shown potent anti-inflammatory activity. The presence of a highly dense oxygen functionality and a polycyclic ring system presents significant synthetic challenges. Herein, we report an efficient strategy for the construction of the tetracyclic core system of berkeleyacetal. Our synthetic strategy features two cycloadditions ([4+2] and [5+2]) to forge the tetracyclic core and Achmatowicz rearrangement for the preparation of the cyclization substrates containing B and E rings.
Collapse
Affiliation(s)
- Miguel Adrián Márquez-Cadena
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Wei Zhang
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Rongbiao Tong
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
9
|
Fan JH, Hu YJ, Li LX, Wang JJ, Li SP, Zhao J, Li CC. Recent advances in total syntheses of natural products containing the benzocycloheptane motif. Nat Prod Rep 2021; 38:1821-1851. [PMID: 33650613 DOI: 10.1039/d1np00003a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: 2010 to 2020Benzocycloheptane is a fundamental and unique structural motif found in pharmaceuticals and natural products. The total syntheses of natural products bearing the benzocycloheptane subunit are challenging and there are only a few efficient approaches to access benzocycloheptane. Thus, new methods and innovative strategies for preparing such natural products need to be developed. In this review, recent progress in the total syntheses of natural products bearing the benzocycloheptane motif is presented, and key transformations for the construction of benzocycloheptane are highlighted. This review provides a useful guide for those engaged in the syntheses of natural products containing the benzocycloheptane motif.
Collapse
Affiliation(s)
- Jian-Hong Fan
- Institute of Chinese Medical Sciences, University of Macau, Macau, China. and Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ya-Jian Hu
- Institute of Chinese Medical Sciences, University of Macau, Macau, China. and Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jing-Jing Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shao-Ping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Jing Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|