1
|
Tian H, Wang Q, Wei W, Chen Y, Zhong X, Yao G, Chen X, Zhao G, Kong D. Synthesis of α-Carbonyl-α'-sulfenyl Sulfoxonium Ylides in Water at Room Temperature. J Org Chem 2024; 89:15523-15528. [PMID: 39425656 DOI: 10.1021/acs.joc.4c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
An efficient synthesis of α-carbonyl-α'-sulfenyl sulfoxonium ylides through a KIO3-promoted cross-dehydrogenative coupling reaction of aryl thiols and α-carbonyl sulfoxonium ylides in an aqueous medium at room temperature has been described. The α-carbonyl sulfoxonium ylides and aryl thiols adorned with various functional groups were well-tolerated and afforded moderate to high yields of α-carbonyl-α'-sulfenyl sulfoxonium ylide derivatives. Finally, by converting synthesized ylide 3a into other valuable compounds, we demonstrated the practicality of this synthetic method.
Collapse
Affiliation(s)
- Haoyu Tian
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Qinghe Wang
- Venturepharm Pharmaceuticals (Hainan) Co., Ltd., No. 279, Nanhai Avenue, Haikou 570100, Hainan Province, China
| | - Wenyan Wei
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Yan Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Xia Zhong
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Guiwei Yao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Xun Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Guangkuan Zhao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| | - Dulin Kong
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P.R. China
| |
Collapse
|
2
|
Wen X, Li M, Peng X, Liu C, Zhong X, Tan R, Jiang H, Li J. Bifunctionalization of α-Bromophenone: An Access to Functionalized β-Keto Thiosulfones. J Org Chem 2024; 89:14255-14264. [PMID: 39264813 DOI: 10.1021/acs.joc.4c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A simple and high-yielding strategy to produce a variety of β-keto sulfides using asymmetrical and symmetrical thiosulfonates with ketones under mild conditions is reported. It was found that the various substituted compounds, with both electron-withdrawing and electron-donating substituents, afforded a wide range of β-keto thiosulfones (α-thioaryl-β-keto sulfones) in moderate to high yields. The transformations were reliable at the gram-scale, thus illustrating their efficiency and practicality. A plausible mechanism for the protocol is also proposed.
Collapse
Affiliation(s)
- Xiaoqing Wen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mengxin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoyan Peng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanli Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianglin Zhong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
Hu XB, Chen Y, Zhu CL, Xu H, Zhou X, Rao W, Hang XC, Chu XQ, Shen ZL. Cross-Electrophile Couplings of Benzyl Sulfonium Salts with Thiosulfonates via C-S Bond Activation. J Org Chem 2024; 89:13601-13607. [PMID: 39228065 DOI: 10.1021/acs.joc.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A zinc-mediated cross-electrophile coupling of benzyl sulfonium salts with thiosulfonates via C-S bond cleavage was achieved. The reductive thiolation proceeded well under transition metal-free conditions to afford the desired benzyl sulfides in good yields, exhibiting both broad substrate scope and good functionality tolerance. In addition, the reaction could be applied to the use of selenosulfonate as an effective selenylation agent and be subjected to scale-up synthesis.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Yuwei Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Chen-Long Zhu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Chun Hang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Hu X, Zhong K, Ruan Z. Tunable electrochemical diverse sulfurization of sulfoxonium ylides with disulfides. Chem Commun (Camb) 2024; 60:8573-8576. [PMID: 39045622 DOI: 10.1039/d4cc02479f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An electrochemical protocol for the synthesis of sulfursulfoxonium ylides and 1,3-dithioketals by reacting sulfoxonium ylides with disulfides has been developed under simple and mild conditions. By changing the solubility of the raw materials and the dielectric parameters of the electrolyte, sulfurization enabled a selective dehydrogenation of C-S and the construction of 1,3-dithioketals. The transformation is an ideal approach to prepare organosulfur reagents with a broad functional group tolerance as well as high selectivity, which leads to vicinal difunctionalized organosulfur compounds.
Collapse
Affiliation(s)
- Xinwei Hu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Kaihui Zhong
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Zhixiong Ruan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| |
Collapse
|
5
|
Shen DT, Wu WR, Zou WX, Hu Q, Wei J, Bao MZ, Liu X, Zhang SS. Isocyanide-Based Multicomponent Reaction: Cascade α-Acyloxylation/Carboxamidation and [3 + 1+1] Cyclization of I (III)/S (VI)-Ylides. Org Lett 2024; 26:6263-6268. [PMID: 38995695 DOI: 10.1021/acs.orglett.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
A metal-free cascade of α-acyloxylation/carboxamidation of I(III)/S(VI)-ylides, carboxylic acids, and isonitriles via a Passerini-like multicomponent reaction is reported. Unexpectedly, [3 + 1+1] cyclization involving I(III)/S(VI)-ylides and two molecules of ethyl isocyanoacetate was observed. The strategy allows for the synthesis of unsymmetrical α,α-disubstituted ketones and functionalized pyrroles with up to 99% yield and wide substrate compatibility. Notably, the procedure has been extended to the late-stage modification of drugs and natural products, offering an elegant complement to the classic Passerini reaction.
Collapse
Affiliation(s)
- Dan-Ting Shen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Wen-Rong Wu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Wen-Xuan Zou
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Jiaohang Wei
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Mei-Zhu Bao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
6
|
Li S, Huang Z, Wang X, Yingxiong H, Niu G, Chen Z, Zhang Z. Catalyst-Free Synthesis of Thiosulfonates and 3-Sulfenylindoles from Sodium Sulfinates in Water. Chemistry 2024:e202400153. [PMID: 38566460 DOI: 10.1002/chem.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
This paper presents a green and efficient aqueous-phase method for the synthesis of thiosulfonates, which has the benefits of no need for catalysts or redox reagents and a short reaction time, providing a method with great economic value for synthesizing thiosulfonates. Furthermore, 3-Sulfenylindoles can be easily synthesized using this method, which expands the potential applications of this reaction.
Collapse
Affiliation(s)
- Shaoke Li
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Zijun Huang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Xin Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Hui Yingxiong
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Guohao Niu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Ziyan Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| | - Zhenlei Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China
| |
Collapse
|
7
|
Sharma A, Gola AK, Pandey SK. Straightforward access to α-thiocyanoketones and thiazoles from sulfoxonium ylides. Chem Commun (Camb) 2023; 59:10247-10250. [PMID: 37458384 DOI: 10.1039/d3cc02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient, versatile, and metal-free strategies for synthesizing α-thiocyanoketones and thiazoles from β-ketosulfoxonium ylides and ammonium thiocyanate have been described. Due to its simplicity, benign reaction conditions, excellent chemoselectivity, and high yield, this method represents a unique approach for divergent synthesis. Finally, the potential value of the developed methods is demonstrated via large-scale reactions and synthesis of Fanetizole, an anti-inflammatory drug.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
8
|
Chen SY, Zeng YF, Zou WX, Shen DT, Zheng YC, Song JL, Zhang SS. Divergent Synthesis of Tetrasubstituted Phenols via [3 + 3] Cycloaddition Reaction of Vinyl Sulfoxonnium Ylides with Cyclopropenones. Org Lett 2023; 25:4286-4291. [PMID: 37265108 DOI: 10.1021/acs.orglett.3c01327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two categories of tetrasubstituted phenols were prepared via the cycloaddition reaction of vinyl sulfoxonnium ylides with cyclopropenones in a switchable manner. Copper carbenoid was proposed as the active intermediate in the process of 2,3,4,5-tetrasubstituted phenols formation, while 2,3,5,6-tetrasubstituted phenols were generated via the direct [3 + 3] annulation of vinyl sulfoxonnium ylides with cyclopropenones under metal-free conditions. Further synthetic applications were also demonstrated.
Collapse
Affiliation(s)
- Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Xuan Zou
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Dan-Ting Shen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Xu Z, Yao J, Zhong K, Lin S, Hu X, Ruan Z. Electrochemical Selenylation of Sulfoxonium Ylides for the Synthesis of gem-Diselenides as Antimicrobials against Fungi. J Org Chem 2023; 88:5572-5585. [PMID: 37083436 DOI: 10.1021/acs.joc.3c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Organoselenium compounds are important scaffolds in pharmaceutical molecules. Herein, we report metal-free, electrochemical, highly chemo- and regioselective synthesis of gem-diselenides through the coupling of α-keto sulfoxonium ylides with diselenides. The versatility of the electrochemical manifold enabled the selenylation with ample scope and broad functional group tolerance, as well as setting the stage for modification of complex bioactive molecules. Detailed mechanistic studies revealed that the key C-Se bond was constructed using n-Bu4NI as an electrolyte and catalyst through the electrosynthetic protocol. Finally, the desired α-keto gem-diselenides showed excellent antimicrobial activity against Candida albicans, which can be identified as the lead compounds for further exploration.
Collapse
Affiliation(s)
- Zhongnan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiwen Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Kaihui Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shuimu Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
10
|
Kumar N, Sharma A, Kumar U, Pandey SK. Multicomponent Reaction of CS 2, Amines, and Sulfoxonium Ylides in Water: Straightforward Access to β-Keto Dithiocarbamates, Thiazolidine-2-thiones, and Thiazole-2-thiones. J Org Chem 2023; 88:6120-6125. [PMID: 37018423 DOI: 10.1021/acs.joc.2c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Simple, versatile, and catalyst-free synthetic methods for β-keto dithiocarbamates, thiazolidine-2-thiones, and thiazole-2-thiones via the multicomponent reaction of CS2, amines, and sulfoxonium ylides have been described. The β-keto sulfoxonium ylides furnished β-keto dithiocarbamates in the presence of CS2 and secondary amines, whereas primary amines afforded thiazolidine-2-thiones or thiazole-2-thiones after dehydration in an acidic environment. With simple procedures, the reaction has a wide substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upendra Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
11
|
Wan C, Hou Z, Yang D, Zhou Z, Xu H, Wang Y, Dai C, Liang M, Meng J, Chen J, Yin F, Wang R, Li Z. The thiol-sulfoxonium ylide photo-click reaction for bioconjugation. Chem Sci 2023; 14:604-612. [PMID: 36741507 PMCID: PMC9847666 DOI: 10.1039/d2sc05650j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Visible-light-mediated methods were heavily studied as a useful tool for cysteine-selective bio-conjugation; however, many current methods suffer from bio-incompatible reaction conditions and slow kinetics. To address these challenges, herein, we report a transition metal-free thiol-sulfoxonium ylide photo-click reaction that enables bioconjugation under bio-compatible conditions. The reaction is highly cysteine-selective and generally finished within minutes with naturally occurring riboflavin derivatives as organic photocatalysts. The catalysts and substrates are readily accessible and bench stable and have satisfactory water solubility. As a proof-of-concept study, the reaction was smoothly applied in chemo-proteomic analysis, which provides efficient tools to explore the druggable content of the human proteome.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 P. R. China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen 518116 P. R. China
| | - Hongkun Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chuan Dai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Mingchan Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Jun Meng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen 518116 P. R. China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| |
Collapse
|
12
|
Metal-Free One-Pot Multi-Functionalization of Unsaturated Compounds with Interelement Compounds by Radical Process. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020787. [PMID: 36677845 PMCID: PMC9861539 DOI: 10.3390/molecules28020787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
In recent years, the importance of "environmentally friendly manufacturing" has been increasing toward the establishment of a resource-recycling society. In organic synthesis, as well, it is becoming increasingly important to develop new synthetic strategies with resource conservation and the recycling of elemental resources in mind, rather than just only synthesis. Many studies on the construction of frameworks of functional molecules using ionic reactions and transition-metal-catalyzed reactions have been reported, but most of them have focused on the formation of carbon-carbon bonds. However, it is essential to introduce appropriate functional groups at appropriate positions in molecules in order for the molecules to express their functions, and furthermore, the highly selective preparation of multiple functional groups is considered important for the creation of new functional molecules. In this review, we focus on radical reactions with high functional group selectivity and overview the recent progress in practical methods for the simultaneous introduction of multiple functional groups and propose future synthetic strategies that emphasize the recycling of elemental resources and environmental friendliness.
Collapse
|
13
|
Chaubey TN, Borpatra PJ, Sharma A, Pandey SK. Metal-Free Syntheses of α-Ketothioamide and α-Ketoamide Derivatives from Sulfoxonium Ylides. Org Lett 2022; 24:8062-8066. [PMID: 36278911 DOI: 10.1021/acs.orglett.2c03371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient base, additive and metal-free synthetic methods for α-ketothioamide and α-ketoamide derivatives from readily available sulfoxonium ylides have been described. Sulfoxonium ylides with primary or secondary amines afforded α-ketothioamides in the presence of elemental sulfur, whereas α-ketoamides were produced when I2 and TBHP were present. The reaction proceeded well at room temperature and generated the corresponding molecules in good to excellent yields. The reaction can be scaled-up and tolerated by a range of functional groups with simple operational procedures.
Collapse
Affiliation(s)
- Trayambek Nath Chaubey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Paran J Borpatra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
14
|
Zhang LM, Yuan DF, Fu ZH, Li HR, Li M, Wen LR, Zhang LB. Electrochemical synthesis of α-thiocyanato-α-carbonyl sulfoxonium ylides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Wang X, Meng J, Zhao D, Tang S, Sun K. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Zeng Q, Kang X, Lai S, Liang X. 1,1-Difunctionalization of α‑Carbonyl Sulfur Ylides with Thiosulfonates: Synthesis of β-Keto Thiosulfones. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1811-8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract1,1-Difunctionalization of α‑carbonyl sulfur ylides and thiosulfonates under simple conditions is disclosed. In this protocol, two new C–S bonds are constructed in a one-step reaction. A series of aliphatic and aromatic β-keto thiosulfones were obtained in moderate to good yields. This reaction probably proceeds through sulfur ylide-involved nucleophilic substitution of an ion pair within a solvent cage.
Collapse
|
17
|
Caiuby CAD, Furniel LG, Burtoloso ACB. Asymmetric transformations from sulfoxonium ylides. Chem Sci 2022; 13:1192-1209. [PMID: 35222906 PMCID: PMC8809404 DOI: 10.1039/d1sc05708a] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Sulfoxonium ylides are important surrogates for diazo compounds, and their use in industry as safer alternatives has been evaluated during recent years. Beyond the known classical transformations, these ylides have also been used in a surprising plethora of novel and intrinsic chemical reactions, especially in recent years. Bench stability and handling are also an advantage of this class of organosulfur molecules. Despite this, efficient asymmetric transformations, specifically catalytic enantioselective versions, have only recently been reported, and there are specific reasons for this. This perspective article covers this topic from the first studies up to the latest advances, giving personal perspectives and showing the main challenges in this area in the coming years.
Collapse
Affiliation(s)
- Clarice A D Caiuby
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Lucas G Furniel
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| | - Antonio C B Burtoloso
- São Carlos Institute of Chemistry, University of São Paulo São Carlos SP CEP 13560-970 Brazil
| |
Collapse
|
18
|
Duan B, Li H, Chen Y, Xu C, Yin G. Access to α,α-dithioketones through direct di-sulfenylation of methyl ketones mediated by KOH-DMSO system. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
|
20
|
Yu T, Song D, Xu Y, Liu B, Chen N, Liu Y. Study on the Application of Thios/Selenium Sulfonates as Radical Reagent. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Pan M, Tong Y, Qiu X, Zeng X, Xiong B. One-pot synthesis of 3-trifluoromethylbenzo[ b][1,4]oxazines from CF 3-imidoyl sulfoxonium ylides with 2-bromophenols. Chem Commun (Camb) 2022; 58:12443-12446. [DOI: 10.1039/d2cc04863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot two-step fashion for the synthesis of 3-trifluoromethyl-1,4-benzoxazines from CF3-imidoyl sulfoxonium ylides and 2-bromophenols via lithium-bromide-promoted O–H insertion of sulfoxonium ylides and annulation has been demonstrated.
Collapse
Affiliation(s)
- Mingshi Pan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
22
|
Yu S, Chen Z, Chen Q, Lin S, He J, Tao G, Wang Z. Research Progress in Synthesis and Application of Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Wang F, Chen Y, Rao W, Shen SS, Wang SY. Cu-catalyzed efficient construction of S (Se)-containing functional organosilicon compounds. Chem Commun (Camb) 2022; 58:12564-12567. [DOI: 10.1039/d2cc04512e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed cascade reaction of four-membered silacyclobutanes (SCBs) and thiosulfonates to construct S (Se)-containing organosilicon compounds is described.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu road, Huqiu district, Suzhou, 215009, P. R. China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
24
|
Wen S, Chen Y, Tian Q, Zhang Y, Cheng G. Transition-Metal-, Additive-, and Solvent-Free [3 + 3] Annulation of RCF 2-Imidoyl Sulfoxonium Ylides with Cyclopropenones to Give Multifunctionalized CF 3-Pyridones. J Org Chem 2021; 87:1124-1132. [PMID: 34965129 DOI: 10.1021/acs.joc.1c02464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient and practical strategy was developed to synthesize 1,3,4-triaryl-6-trifluoromethylpyridones from CF3-imidoyl sulfoxonium ylides and cyclopropenones in good to excellent yields. This stepwise [3 + 3] annulation reaction was carried out under transition-metal-, additive-, and solvent-free conditions, generating 1 equiv of dimethyl sulfoxide as byproduct and tolerating a series of functional groups.
Collapse
Affiliation(s)
- Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
25
|
Liu Y, Zhang N, Xu Y, Chen Y. Visible-Light-Induced Radical Cascade Reaction of 1-Allyl-2-ethynylbenzoimidazoles with Thiosulfonates to Assemble Thiosulfonylated Pyrrolo[1,2- a]benzimidazoles. J Org Chem 2021; 86:16882-16891. [PMID: 34739244 DOI: 10.1021/acs.joc.1c02082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced radical domino reaction of 1-allyl-2-ethynylbenzoimidazoles with thiosulfonates was developed, which generated the thiosulfonylated pyrrolo[1,2-a]benzimidazoles in moderate to good yields. This reaction proceeded under transition-metal-free conditions with good functional group tolerance and high regioselectivity. The possible pathway involved thiosulfonates were activated through the energy transfer route promoted by photocatalysis.
Collapse
Affiliation(s)
- Yan Liu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Niuniu Zhang
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanli Xu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanyan Chen
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| |
Collapse
|
26
|
Wen S, Tian Q, Chen Y, Zhang Y, Cheng G. Annulation of CF 3-Imidoyl Sulfoxonium Ylides with 1,3-Dicarbonyl Compounds: Access to 1,2,3-Trisubstituted 5-Trifluoromethylpyrroles. Org Lett 2021; 23:7407-7411. [PMID: 34543038 DOI: 10.1021/acs.orglett.1c02598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lithium-bromide-promoted nucleophilic substitution/annulation cascade reaction between CF3-imidoyl sulfoxonium ylides and 1,3-dicarbonyl compounds has been established, and the corresponding 1,2,3-trisubstituted 5-trifluoromethylpyrroles have been obtained in 27-78% yield. This reaction features a broad substrate scope and generates dimethyl sulfoxide and H2O as byproducts.
Collapse
Affiliation(s)
- Si Wen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Qingyu Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Yuqing Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, the Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
27
|
Zhu Z, Chen X, Liu S, Zhang J, Shen X. Synthesis of 1‐Tri(di)fluoromethyl 1,4‐Diketones Enabled by Radical Brook Rearrangement. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhihong Zhu
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Chen
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Shanshan Liu
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Jianjun Zhang
- State Key Laboratory of Fluorinated Greenhouse Gases Replacement and Control Treatment Zhejiang Research Institute of Chemical Industry Hangzhou 310023 China
| | - Xiao Shen
- The Institute for Advanced Studies Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- Shenzhen Research Institute of Wuhan University Wuhan University Shenzhen 518057 China
| |
Collapse
|
28
|
Day DP, Mora Vargas JA, Burtoloso ACB. Direct Synthesis of α-Fluoro-α-Triazol-1-yl Ketones from Sulfoxonium Ylides: A One-Pot Approach. J Org Chem 2021; 86:12427-12435. [PMID: 34424699 DOI: 10.1021/acs.joc.1c01441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The work reported herein showcases a new route to access α-fluoro-α-triazol-1-yl ketones from sulfoxonium ylides via α-azido-α-fluoro ketone intermediates. In a one-pot, two-step sequence, the ketosulfoxonium reactant initially undergoes insertion of F+ and N3-, followed by a subsequent CuAAC reaction with arylacetylenes to install a 1,4-triazolo moiety. The approach allows for modification to both the sulfoxonium ylide and arylacetylene reactants. Fifteen examples have been reported, with yields ranging between 22% and 75%.
Collapse
Affiliation(s)
- David Philip Day
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Jorge Andrés Mora Vargas
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | | |
Collapse
|
29
|
|
30
|
Jannapu Reddy R, Haritha Kumari A, Kumar JJ. Recent advances in the synthesis and applications of β-keto sulfones: new prospects for the synthesis of β-keto thiosulfones. Org Biomol Chem 2021; 19:3087-3118. [PMID: 33885563 DOI: 10.1039/d1ob00111f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review mainly focuses on recent developments in the preparation of β-keto sulfones and their extensive synthetic applications. New prospects for the synthesis of β-keto thiosulfones have also been highlighted. Over the last decade, there has been exponential growth in the direct construction of β-keto sulfones using a wide variety of keto and sulfonyl precursors. Of note, the most promising photoredox transformations and electrochemical synthesis methods of β-keto sulfones are also presented. Moreover, β-keto sulfones are versatile building blocks in organic synthesis due to their three essential functional groups: sulfonyl, carbonyl, and active methylene moieties. The convenient preparation of β-keto sulfones allows the synthesis of many valuable carbocyclic and heterocyclic compounds, and the effortless removal of the sulfonyl moiety via transformations is supported. The chemistry of β-keto sulfones (2013 to present) can be divided into several sections based on the sulfonyl surrogates, and ubiquitous synthetic strategies were systematically outlined.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | | | | |
Collapse
|
31
|
Day DP, Vargas JAM, Burtoloso ACB. Synthetic Routes Towards the Synthesis of Geminal α-Difunctionalized Ketones. CHEM REC 2021; 21:2837-2854. [PMID: 33533538 DOI: 10.1002/tcr.202000176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The importance of gem-difunctionalized ketones is represented by their broad applications across chemical boundaries over recent years. The interesting reactivities that this class of compounds possess have made them ideal building blocks to access high-value organic molecules. Furthermore, the gem-difunctionalized ketone moiety has featured in numerous bioactive molecules. For these reasons, a plethora of routes to access such significant molecules have been developed by research groups worldwide - this account looks at delineating the synthesis of gem-difunctionalized ketones from carbonyl substrates, diazo compounds, sulfur ylides and alkynyl reactants.
Collapse
Affiliation(s)
- David P Day
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| | - Jorge A M Vargas
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil.,Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00 Campus Pampalinda, Santiago de Cali, Colombia
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| |
Collapse
|
32
|
Lv Y, Luo J, Ma Y, Dong Q, He L. Visible-light-promoted sulfonylation of thiols with aryldiazonium and sodium metabisulphite leading to unsymmetrical thiosulfonates. Org Chem Front 2021. [DOI: 10.1039/d1qo00112d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A facile visible-light-mediated protocol has been proposed for the synthesis of thiosulfonates via rhodamine 6G catalyzed sulfonylation of thiols with aryldiazonium and sodium metabisulphite at room temperature.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Yuchuan Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research
- Northwest Institute of Plateau Biology
- Qinghai 810008
- People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering
- Shihezi University Xinjiang Uygur Autonomous Region
- People's Republic of China
| |
Collapse
|
33
|
Li SS, Qin Q, Qi Z, Yang LM, Kang Y, Zhang XZ, Ma AJ, Peng JB. Synthesis of disubstituted γ-butyrolactones and spirocyclopropanes via a multicomponent reaction of aldehydes, Meldrum's acid and sulfoxonium ylides. Org Chem Front 2021. [DOI: 10.1039/d1qo00303h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient synthesis of disubstituted γ-butyrolactones and spirocyclopropanes via multicomponent reaction of aldehydes, Meldrum's acid and sulfoxonium ylides has been developed.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| | - Qi Qin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| | - Zhuang Qi
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| | - Li-Miao Yang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| | - Yun Kang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- People's Republic of China
| |
Collapse
|
34
|
Su K, Guo X, Zhu L, Liu Y, Lu Y, Chen B. Indolizine synthesis via radical cyclization and demethylation of sulfoxonium ylides and 2-(pyridin-2-yl)acetate derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel radical cross-coupling/cyclization of 2-(pyridin-2-yl)acetate derivatives and sulfoxonium ylides is developed, which provides a straightforward access to structurally diverse methylthio-substituted indolizine.
Collapse
Affiliation(s)
- Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Liangwei Zhu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Yixuan Lu
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
35
|
He M, Chen Y, Luo Y, Li J, Lai R, Yang Z, Wang Y, Wu Y. Transition-metal-free [3+3] annulation reaction of sulfoxonium ylides with cyclopropenones for the synthesis of 2-pyrones. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|