1
|
Xiao Y, Zhou H, Liu H, Li X. Trifluoroacetic Acid Mediated Additive-Free Late-Stage Native Peptide Cyclization to Form Disulfide Mimetics via Thioketalization with Ketones. Org Lett 2024; 26:6512-6517. [PMID: 39046909 DOI: 10.1021/acs.orglett.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Peptide cyclization is often used to introduce conformational rigidity and to enhance the physiological stability of the peptide. This study presents a novel late-stage cyclization method for creating thioketal cyclic peptides from bis-cysteine peptides and drugs. Symmetrical cyclic ketones and acetone were found to react with bis-cysteine unprotected peptides efficiently to form thioketal linkages in trifluoroacetic acid (TFA) without any other additive. The attractive features of this method include high chemoselectivity, operational simplicity, and robustness. In addition, TFA as the reaction solvent can dissolve any unprotected peptide. As a showcase, the dimethyl thioketal versions of lanreotide and octreotide were prepared and evaluated, both of which showed much improved reductive stability and comparable activity.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, People's Republic of China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| |
Collapse
|
2
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
3
|
Lu MZ, Loh TP. Development and Applications of Water-Compatible Reactions: A Journey to Be Continued. Acc Chem Res 2024; 57:70-92. [PMID: 38112292 DOI: 10.1021/acs.accounts.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
ConspectusThe pursuit of novel and eco-friendly methods in organic synthesis is gaining prominence, with a strong emphasis on green transformations using renewable and sustainable resources. Among these environmentally conscious approaches, water-compatible reactions stand out for their many advantages. Water, as a solvent, offers unmatched abundance, cost-efficiency, and environmental compatibility compared to organic solvents. Its use eliminates the need for complex protection and deprotection steps for reactive functional groups in multistep synthesis and enables the use of water-soluble substrates like proteins and carbohydrates. Water-compatible reactions also provide opportunities to combine with enzymes, resulting in chemoenzymatic transformations that can increase efficiency. Additionally, these reactions facilitate site-specific modification and the bioconjugation of biomolecules, leading to bioconjugate therapeutics.Over nearly three decades, our research group has been dedicated to developing innovative water-compatible methodologies and concepts. This Account provides a comprehensive overview of our contributions since 1994. Our central strategy revolves around integrating green chemistry principles into our methods, focusing on (i) developing reactions that can operate under mild conditions, including room temperature, atmospheric pressure, and physiological pH; (ii) designing atom-economical reactions that minimize waste production; (iii) replacing toxic and flammable organic solvents with eco-friendly alternatives like water and ethanol; and (iv) reducing reliance on metals or halogenated compounds in specific reactions.In this Account, we detail our achievements in developing efficient methodologies in aqueous media, highlighting their scope, limitations, asymmetric control, and applications for synthesizing complex molecules and functionalizing peptides and proteins. Mechanistic investigations underlying these developments are also discussed when applicable. Furthermore, we offer insights into the reasoning behind our work and address future opportunities and challenges in this area of research. We hope that this Account will inspire continued interest and foster new breakthroughs. By exploring innovative and broadly applicable strategies that expand the water-compatible synthetic toolbox, we aim to pave the way for the truly green and sustainable synthesis of complex molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371
| |
Collapse
|
4
|
Wei D, Jiang Y, Mao Y, Xu Z, Chen J, Gao X, Li J, Jiang B, Chen H. Phenyldivinylsulfonamides for the construction of antibody-drug conjugates with controlled four payloads. Bioorg Chem 2023; 134:106463. [PMID: 36924655 DOI: 10.1016/j.bioorg.2023.106463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Phenyldivinylsulfonamides emerged from a series of divinylsulfonamides, demonstrating their ability to effectively re-bridge disulfide bonds. This kind of linkers was attached to monomethyl auristatin E (MMAE) and further conjugated with a model antibody, trastuzumab. After optimization, the linker 20 can deliver stable and highly homogenous DAR (Drug-to-Antibody Ratio) four antibody-drug conjugates (ADCs). The method was also applicable for other IgG1 antibodies to obtain ADCs with controlled four payloads. Moreover, the MMAE-bearing ADC is potent, selective and efficacious against target cell lines.
Collapse
Affiliation(s)
- Ding Wei
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Yuecheng Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | - Yurong Mao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | - Jiakang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Xiuxia Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Jiusheng Li
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
5
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Lu Y, You L, Chen C. A phosphine-based redox method for direct conjugation of disulfides. Chem Commun (Camb) 2022; 58:12439-12442. [PMID: 36278800 PMCID: PMC9661873 DOI: 10.1039/d2cc04967h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Technologies for cysteine disulfide detection and conjugation are pivotal to understanding protein functions and developing disulfide-derived therapeutic agents. Currently, disulfide modification requires reductive cleavage prior to functionalization, posing challenges to differentiating disulfides from free thiols. We describe herein Redox-assisted Disulfide Direct Conjugation (RDDC) as a new method to enable disulfide rebridging without cross-reacting with free thiols.
Collapse
Affiliation(s)
- Yong Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | - Lin You
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
7
|
Kang MS, Xin Khoo JY, Jia Z, Loh TP. Development of catalyst-free carbon-sulfur bond formation reactions under aqueous media and their applications. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Duan B, Li H, Chen Y, Xu C, Yin G. Access to α,α-dithioketones through direct di-sulfenylation of methyl ketones mediated by KOH-DMSO system. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kang MS, Kong TWS, Khoo JYX, Loh TP. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem Sci 2021; 12:13613-13647. [PMID: 34760149 PMCID: PMC8549674 DOI: 10.1039/d1sc02973h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Many fields in chemical biology and synthetic biology require effective bioconjugation methods to achieve their desired functions and activities. Among such biomolecule conjugates, antibody-drug conjugates (ADCs) need a linker that provides a stable linkage between cytotoxic drugs and antibodies, whilst conjugating in a biologically benign, fast and selective fashion. This review focuses on how the development of novel organic synthesis can solve the problems of traditional linker technology. The review shall introduce and analyse the current developments in the modification of native amino acids on peptides or proteins and their applicability to ADC linker. Thereafter, the review shall discuss in detail each endogenous amino acid's intrinsic reactivity and selectivity aspects, and address the research effort to construct an ADC using each conjugation method.
Collapse
Affiliation(s)
- Min Sun Kang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Theresa Wai See Kong
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Joycelyn Yi Xin Khoo
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Teck-Peng Loh
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
10
|
Tu D, Luo J, Jiang W, Tang Q. Solvent-free preparation of α,α-dichloroketones with sulfuryl chloride. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|