1
|
Laha D, Bankar OS, Santra S, Navale BS, Ghosh D, Bhat RG. Photosensitizer-Free Photoinduced Ground-State Triplet Carbene-Assisted Persistent Aryloxy Radical Generation via Hydrogen Atom Transfer. Org Lett 2024; 26:8674-8679. [PMID: 39373279 DOI: 10.1021/acs.orglett.4c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The traditional intermolecular O-H insertion strategy is typically associated with the reactivity exhibited by the singlet spin state, or it can alter the spin state from triplet to singlet by hydrogen bonding. Herein, we report diazoarylidene succinimide that generates a persistent ground-state triplet carbene under visible light (Blue LED, 456 nm) without a photosensitizer. This triplet carbene undergoes an intramolecular O-H insertion via hydrogen atom transfer, forming a persistent aryloxy radical without altering its spin state and leading to biologically relevant 2H-chromenes.
Collapse
Affiliation(s)
- Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Onkar S Bankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Balu S Navale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
- Department of Chemistry, Institute of Science, Nagpur, Maharashtra 440001, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
2
|
Yi M, Wu X, Yang L, Yuan Y, Lu Y, Zhang Z. Visible Light Induced B-H Bond Insertion Reaction with Diazo Compounds. J Org Chem 2024; 89:12583-12590. [PMID: 39158102 DOI: 10.1021/acs.joc.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A protocol induced by visible light for the direct insertion of α-carbonyl carbenes into the B-H bond of amine-borane adducts has been developed under conditions that are free of metal and photocatalyst. This approach provides a straightforward route to various organoboron compounds from diazo compounds and amine-borane adducts with moderate to good yields. Mechanistic investigations reveal that this photoinduced reaction proceeds through concerted carbene insertion into the B-H bond, and the photoinduced generation of free carbene from α-diazo esters may be the rate-determining step.
Collapse
Affiliation(s)
- Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
4
|
Liu Y, Yang Q, Wang W, Fu Y, Ding Q, Peng Y. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones and cyclic ethers toward quinazoline-based hybrids. Org Biomol Chem 2024; 22:4332-4346. [PMID: 38726656 DOI: 10.1039/d4ob00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An effective approach for the construction of 4-short-chain ether attached carbonyl group-substituted quinazolines was developed. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones, and cyclic ethers, with a broad substrate scope and excellent functional group tolerance, under extremely mild conditions without the need for any additional additives and catalysts, selectively led to quinazoline-based hybrids in good to excellent yields. The synthesized hybrids, which are a conglomeration of a quinazoline, a short-chain ether, and a carbonyl group in one molecular skeleton, have potential for application in the development of new drugs or drug candidates.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Wei Wang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yang Fu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
5
|
Montiège O, Rouzier F, Lhoste J, Gaulon-Nourry C, Castanet AS, Chany AC. Rhodium(I)-Catalyzed O-H Insertions on O-Protected α-Diazo-β-Hydroxyesters. J Org Chem 2024; 89:3194-3201. [PMID: 38349765 DOI: 10.1021/acs.joc.3c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The X-H insertion reaction constitutes a powerful tool to create diversity through the diazo decomposition of diazocarbonyl compounds. However, until now, X-H insertion on α-diazo-β-aryl-β-hydroxyester scaffolds, readily prepared by aldol-type addition, remained a challenge for the organic chemist. We report herein the first O-H insertions on O-protected α-diazo-β-aryl-β-hydroxyesters, providing straightforward access to a wide range of α,β-dioxygenated esters through modulation of the alcohol and of the aryl substituent. The key feature to achieving this transformation is the use of Rh(I) catalysts, which proved to be crucial to favor the targeted O-H insertion product over the competing 1,2-H and 1,2-Ar migration products. Overall, 32 O-H insertion products have been prepared, in moderate to good yields, with a diastereoisomeric ratio up to 7.5:1 in favor of the syn diastereoisomer.
Collapse
Affiliation(s)
- Ophélie Montiège
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Florian Rouzier
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Jérôme Lhoste
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Catherine Gaulon-Nourry
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Anne-Sophie Castanet
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| | - Anne-Caroline Chany
- Institut des Molécules et Matériaux du Mans, IMMM-UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Cedex 9 Le Mans, France
| |
Collapse
|
6
|
Tan F, Wang W, Huang X, Zhong Y, Song T, Wang J, Mei L. O-H Insertion of Hydrogenphosphate Derivatives and α-Diazo Compounds. J Org Chem 2024; 89:2588-2598. [PMID: 38270667 DOI: 10.1021/acs.joc.3c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
An efficient O-H insertion of hydrogenphosphate derivatives and α-diazo compounds has been developed to construct α-phosphoryloxy scaffolds. Diverse α-phosphoryloxy skeletons could be obtained under mild and catalyst-free conditions in good yields. The control experiments suggest a protonation and nucleophilic addition process of α-diazo compounds via a diazonium ion pair for this transformation.
Collapse
Affiliation(s)
- Fei Tan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiao Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi Zhong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ling Mei
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
7
|
Fu Z, Wang X, Ren X, Guo Z, Wang C, Zhou CY. Rhodium-Catalyzed C(sp 2)-O Cross Couplings of Diazo Quinones with Phenols to Construct Diaryl Ethers. Org Lett 2024; 26:292-297. [PMID: 38157220 DOI: 10.1021/acs.orglett.3c03969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The diaryl ether represents a prevalent structural motif found in numerous biologically active molecules. Herein, we describe a dirhodium-catalyzed C(sp2)-O cross coupling reaction between diazo quinones and phenols for the construction of diaryl ethers in moderate to high yields. The reaction proceeds under mild and neutral conditions and is tolerant of various functional groups. The synthetic method has been successfully applied to the concise synthesis of a Navl.7 inhibitor.
Collapse
Affiliation(s)
- Zhen Fu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - XiaoKun Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Ren
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Maiti D, Saha A, Guin S, Maiti D, Sen S. Unveiling catalyst-free electro-photochemical reactivity of aryl diazoesters and facile synthesis of oxazoles, imide-fused pyrroles and tetrahydro-epoxy-pyridines via carbene radical anions. Chem Sci 2023; 14:6216-6225. [PMID: 37325143 PMCID: PMC10266477 DOI: 10.1039/d3sc00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/16/2023] [Indexed: 06/17/2023] Open
Abstract
Herein, we report a reagent-less (devoid of catalyst, supporting electrolyte, oxidant and reductant) electro-photochemical (EPC) reaction [electricity (50 μA) and blue LED (5 W)] of aryl diazoesters to generate radical anions which are subsequently reacted with acetonitrile or propionitrile and maleimides to generate diversely substituted oxazoles, diastereo-selective imide-fused pyrroles and tetrahydroepoxy-pyridines in good to excellent yield. Thorough mechanistic investigation including a 'biphasic e-cell' experiment supports the reaction mechanism involving a carbene radical anion. The tetrahydroepoxy-pyridines could be fluently converted to fused pyridines resembling vitamin B6 derivatives. The source of the electric current in the EPC reaction could be a simple cell phone charger. The reaction was efficiently scaled up to the gram level. Crystal structure, 1D, 2D NMRs and HRMS data confirmed the product structures. This report demonstrates a unique generation of radical anions via electro-photochemistry and their direct applications in the synthesis of important heterocycles.
Collapse
Affiliation(s)
- Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University Chithera, Dadri, Gautam Buddha Nagar UP 201314 India
| | - Argha Saha
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Srimanta Guin
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Debabrata Maiti
- Department of Chemistry, IIT-Bombay Powai Mumbai 400076 MH India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University Chithera, Dadri, Gautam Buddha Nagar UP 201314 India
| |
Collapse
|
9
|
Bai J, Li S, Qi D, Song Z, Li B, Guo L, Song L, Xia W. Visible-Light-Induced Trifluoromethylsulfonylation Reaction of Diazo Compounds Enabled by Manganese Catalysis. Org Lett 2023; 25:2410-2414. [PMID: 36996439 DOI: 10.1021/acs.orglett.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
A visible-light-induced trifluoromethylsulfonylation reaction of diazo compounds is herein reported. This developed synthetic method captures the relatively rare trifluoromethyl sulfone radicals via coordination to the Mn(acac)3 catalyst, delivering the corresponding α-trifluoromethyl sulfone esters in good to moderate yields (up to 82%). This protocol exhibits broad substrate scope and is easily carried out under mild reaction conditions. Furthermore, a plausible mechanism of the reaction was investigated through DFT calculations.
Collapse
Affiliation(s)
- Jinrui Bai
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuoheng Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bin Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lijuan Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Pei C, Empel C, Koenigs RM. Photochemical Intermolecular Cyclopropanation Reactions of Allylic Alcohols for the Synthesis of [3.1.0]-Bicyclohexanes. Org Lett 2023; 25:169-173. [PMID: 36602193 DOI: 10.1021/acs.orglett.2c04010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cyclopropane-fused lactones are highly desirable in drug and natural products synthesis. Herein, we report on a photochemical, chemoselective reaction of aryldiazoacetates with allylic alcohols that furnishes cyclopropane-fused lactone skeletons efficiently in one step. The diastereoselectivity of the protocol was precisely controlled, and chemoselective cyclopropanation of allylic alcohols via free carbene intermediate followed by transesterification constitutes a series of bicyclic lactones in high yield without the formation of ether byproducts via typical O-H insertion reactions.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
11
|
Cai BG, Yao WZ, Li L, Xuan J. Visible-Light-Induced Imide Synthesis through a Nitrile Ylide Formation/Trapping Cascade. Org Lett 2022; 24:6647-6652. [PMID: 36053175 DOI: 10.1021/acs.orglett.2c02671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-promoted three component reaction of diazo compounds, nitriles, and carboxylic acids is reported. The reaction utilizes acceptor-only diazo compounds as carbene precursors and nitriles as carbene-trapping reagents to form the key nitrile ylides. Under the optimal reaction conditions, a wide range of imide products were obtained in good to excellent yields. The gram-scale synthesis and synthetic application of the imide products to form isoquinoline-1,3(2H,4H)-dione derivatives further proved the value of this method.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Wei-Zhong Yao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| |
Collapse
|
12
|
Zhang C. Application of Aromatic Substituted 2,2,2-Trifluoro Diazoethanes in Organic Reactions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220516113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
This review provides an overview of metal-, nonmetal-, light-, or catalyst free-promoting reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with organic molecules for the synthesis of trifluoromethyl-substituted compounds. Several approaches will be reviewed and divided into (i) copper-, iron-, Trop(BF4)-, B(C6F5)3-, light-, or rhodium-promoted reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with silanes, amines, mercaptans, phosphonates, p-cyanophenol, benzoic acid, diphenylphosphinic acid, boranes and nBu3SnH, (ii) rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with amides and phenylhydroxylamine, (iii) copper-, rhodium-, silver-, and light-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkynes, (iv) palladium-, copper-, rhodium- and iron-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkenes, (v) BF3·OEt2-, copper-, tin- or TBAB-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with HF·Py, (difluoroiodo)toluene (p-TolIF2), TMSCF3, AgSCF3, TMSCF2Br or 1,3-dicarbonyl compounds, (vi) palladium-, copper-, gold/silver- or rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with indoles, benzene compounds or pyridines, and (vii) palladium-catalyzed reaction of aromatic substituted 2,2,2-trifluoro diazoethanes with benzyl or allyl bromides.
Collapse
Affiliation(s)
- Cai Zhang
- Department of safety supervision and management, Chongqing Vocational Institute of Safety Technology, Wanzhou District, Chongqing, People’s Republic of China
| |
Collapse
|
13
|
Pei C, Koenigs RM. A Computational Study on the Photochemical O-H Functionalization of Alcohols with Diazoacetates. J Org Chem 2022; 87:6832-6837. [PMID: 35500213 DOI: 10.1021/acs.joc.2c00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this computational study, we provide a detailed analysis of the underlying reaction mechanism and show that a singlet carbene is initially formed. Depending on the pKA of the alcohol, this singlet carbene can engage in direct protonation or enol formation to yield the O-H functionalization product. On the contrary, propargylic alcohols take up a dual role and form a complex with the carbene intermediate that leads to facile cyclopropenation reactions.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
14
|
Gallardo GM, Ventura DJ, Petit AS. Computationally Probing the Mechanism of the Blue-Light-Driven O–H Functionalization of Alcohols by Aryldiazoacetates: Photobasicity or Carbene Chemistry. J Org Chem 2022; 87:6212-6223. [DOI: 10.1021/acs.joc.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Geovanny M. Gallardo
- Department of Chemistry and Biochemistry, California State University─Fullerton, Fullerton, California 92834-6866, United States
| | - Damian J. Ventura
- Department of Chemistry and Biochemistry, California State University─Fullerton, Fullerton, California 92834-6866, United States
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University─Fullerton, Fullerton, California 92834-6866, United States
| |
Collapse
|
15
|
Baker RJ, Ching J, Hou TR, Franzoni I, Lautens M. Dearomative Cyclopropanation of Naphthols via Cyclopropene Ring‐Opening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel J. Baker
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Justin Ching
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Teh Ren Hou
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Ivan Franzoni
- NuChem Sciences Inc. 350 rue Cohen, Suite 201 Saint-Laurent Quebec H4R 2N6 Canada
| | - Mark Lautens
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
16
|
Stivanin ML, Gallo RDC, Spadeo JPM, Cormanich RA, Jurberg ID. A Visible Light-Mediated Three-Component Strategy Based on the Ring-Opening of Cyclic Ethers with Aryldiazoacetates and Nucleophiles. Org Chem Front 2022. [DOI: 10.1039/d1qo01780b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A blue light-promoted reaction between aryldiazoacetates and different nucleophiles has been developed in the presence of THF (and other cyclic ethers) as solvent, allowing the incorporation of these three elements...
Collapse
|
17
|
Empel C, Pei C, Koenigs RM. Unlocking novel reaction pathways of diazoalkanes with visible light. Chem Commun (Camb) 2022; 58:2788-2798. [DOI: 10.1039/d1cc06521a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photochemistry has recently attracted the interest of synthetic chemists to conduct photolysis reactions of diazoalkanes. In this feature article, we provide a concise overview on this field, starting with discoveries...
Collapse
|
18
|
Baker RJ, Ching J, Hou TR, Franzoni I, Lautens M. Dearomative Cyclopropanation of Naphthols via Cyclopropene Ring-Opening. Angew Chem Int Ed Engl 2021; 61:e202116171. [PMID: 34939302 DOI: 10.1002/anie.202116171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
The dearomatization of 2-naphthols represents a simple method for the construction of complex 3D structures from simple planar starting materials. We describe a cyclopropanation of 2-naphthols that proceeds via cyclopropene ring-opening using rhodium and acid catalysis under mild conditions. The vinyl cyclopropane molecules were formed with high chemoselectivity and scalability, which could be further functionalized at different sites. Both computational and experimental evidence were used to elucidate the reaction mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Mark Lautens
- University of Toronto, Dept. of Chemistry, 80 St. George Street, M5S 3H6, Toronto, CANADA
| |
Collapse
|
19
|
Stivanin ML, Duarte M, Leão LPMO, Saito FA, Jurberg ID. Visible-Light-Mediated Strategies for the Preparation of Oxime Ethers Derived from O-H Insertions of Oximes into Aryldiazoacetates. J Org Chem 2021; 86:17528-17532. [PMID: 34793163 DOI: 10.1021/acs.joc.1c02411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two visible-light-mediated O-H insertion protocols involving oximes and aryldiazoacetates leading to different products depending on the solvent employed are reported. In DCM, direct O-H insertion takes place. In THF, there is the additional incorporation of the ring-opened form of this solvent into the structure of the product. These metal-free protocols are mild and tolerant to air and moisture. The preparation of an acaricide has been developed as an example of synthetic application.
Collapse
Affiliation(s)
- Mateus L Stivanin
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil
| | - Marcelo Duarte
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil
| | - Luiz Paulo M O Leão
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil
| | - Felipe A Saito
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil
| | - Igor D Jurberg
- State University of Campinas, Institute of Chemistry, Rua Monteiro Lobato 270, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
20
|
Visible-Light-Mediated Strategies to Assemble Alkyl 2-Carboxylate-2,3,3-Trisubstituted β-Lactams and 5-Alkoxy-2,2,4-Trisubstituted Furan-3(2H)-ones Using Aryldiazoacetates and Aryldiazoketones. Org Lett 2021; 23:9292-9296. [PMID: 34797682 DOI: 10.1021/acs.orglett.1c03662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two new visible-light-mediated strategies are described starting from aryldiazoacetates. The first approach describes their reaction with azides to afford the corresponding imines, and then reaction with aryldiazoketones produces alkyl 2-carboxylate-2,3,3-trisubstituted β-lactams. The second approach describes the reaction with sulfoxides to afford the corresponding sulfoxonium ylides, followed by reaction with aryldiazoketones to produce 5-alkoxy-2,2,4-trisubstituted furan-3(2H)-ones. These protocols take advantage of the photolysis of aryldiazoacetates and the photochemically promoted Wolff rearrangement of aryldiazoketones.
Collapse
|
21
|
Cai BG, Li Q, Li L, Xuan J. Carbon-oxygen bond formation via visible-light-induced O–H insertion between acylsilanes and oximes. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
22
|
Qi Z, Wang S. Chemodivergent Synthesis of Oxazoles and Oxime Ethers Initiated by Selective C-N/C-O Formation of Oximes and Diazo Esters. Org Lett 2021; 23:8549-8553. [PMID: 34618474 DOI: 10.1021/acs.orglett.1c03252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemodivergent reactions of oximes and diazo esters involving Rh-catalyzed [3+2] annulation and photodriven O-H insertion have been developed to generate oxazoles and oxime ethers. A range of aldehyde and ketone oximes reacted with α-diazocarbonyl compounds in a controllable manner in which functional groups, including ketone, ester, amide, ether, thiol ether, silane, alkene, allene, and alkyne groups, were well tolerated.
Collapse
Affiliation(s)
- Zhenjie Qi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2,3-dihydrobenzofuran derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Zhang Y, Zhang X, Zhao J, Jiang J. B(C 6F 5) 3-catalyzed O-H insertion reactions of diazoalkanes with phosphinic acids. Org Biomol Chem 2021; 19:5772-5776. [PMID: 34137768 DOI: 10.1039/d1ob01035b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A highly efficient base-, metal-, and oxidant-free catalytic O-H insertion reaction of diazoalkanes and phosphinic acids in the presence of B(C6F5)3 has been developed. This powerful methodology provides a green approach towards the synthesis of a broad spectrum of α-phosphoryloxy carbonyl compounds with good to excellent yields (up to 99% yield). The protocol features the advantages of operational simplicity, high atom economy, practicality, easy scalability and environmental friendliness.
Collapse
Affiliation(s)
- Yangyang Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Xinzhi Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Jincheng Zhao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China. and Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
25
|
Yang J, Wang G, Zhou H, Li Z, Ma B, Song M, Sun R, Huo C. Visible-light-promoted selective O-alkylation of 2-pyridones with α-aryldiazoacetates. Org Biomol Chem 2021; 19:394-398. [PMID: 33325960 DOI: 10.1039/d0ob02350g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A visible-light-promoted O-H insertion reaction between 2-pyridones and α-aryldiazoacetates has been developed. Upon visible light irradiation, the reaction proceeds smoothly under mild and catalyst-free conditions. A wide scope of 2-pyridones and α-aryldiazoacetates are well tolerated, and various O-alkylated 2-pyridones are obtained with perfect selectivity and good functional group tolerance. A photoinduced radical process is probably responsible for the excellent selectivity.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. and College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhifeng Li
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741000, China
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Menghui Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Rongxia Sun
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
26
|
Empel C, Nguyen TV, Koenigs RM. Tropylium-Catalyzed O–H Insertion Reactions of Diazoalkanes with Carboxylic Acids. Org Lett 2021; 23:548-553. [DOI: 10.1021/acs.orglett.0c04069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney 2052, NSW, Australia
| | - Rene M. Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
27
|
Cai BG, Li Q, Zhang Q, Li L, Xuan J. Synthesis of trisubstituted hydroxylamines by a visible light-promoted multicomponent reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01102b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A green and efficient route for the synthesis of trisubstituted hydroxylamines from β-keto ester, 2-nitrosopyridine and aryldiazoacetates has been reported. This multicomponent reaction occurred under mild conditions without catalysts or additives.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qian Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Qiong Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China
| |
Collapse
|
28
|
Zhang Z, He Z, Xie Y, He T, Fu Y, Yu Y, Huang F. Brønsted acid-catalyzed homogeneous O–H and S–H insertion reactions under metal- and ligand-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01401j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The economical and accessible CF3SO3H successfully catalyzed homogeneous O–H and S–H bond insertion reactions between hydroxyl compounds, thiols and diazo compounds under metal- and ligand-free conditions.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Biology and Biological Engineering
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Tiantong He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yaofeng Fu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Pharmaceutical Sciences
| |
Collapse
|
29
|
Zhao D, Luo J, Liu L, Liu Y. Regiospecific and site-selective C–H allylation of phenols with vinyldiazo compounds catalyzed by In( iii). Org Chem Front 2021. [DOI: 10.1039/d1qo01184g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An In(OTf)3-catalyzed regiospecific, site-selective, and C–H chemoselective insertion reaction of phenols with vinyldiazoacetates was developed. The reactions of aryl or alkyl substituted vinyldiazoacetates exhibited different selective manners.
Collapse
Affiliation(s)
- Dan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jingyan Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lu Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuanyuan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|