1
|
Zuo J, Liu K, Harrell J, Fang L, Piotrowiak P, Shimoyama D, Lalancette RA, Jäkle F. Near-IR Emissive B-N Lewis Pair-Functionalized Anthracenes via Selective LUMO Extension in Conjugated Dimer and Polymer. Angew Chem Int Ed Engl 2024; 63:e202411855. [PMID: 38976519 DOI: 10.1002/anie.202411855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Acenes are attractive as building blocks for low gap organic materials with applications, for example, in organic light emitting diodes, solar cells, bioimaging and diagnostics. Previously, we have shown that modification of dipyridylanthracene via B-N Lewis pair fusion (BDPA) strongly redshifts the emission, while facilitating self-sensitized reactivity toward O2 to reversibly generate the corresponding endoperoxides. Herein, we report on the further expansion of the π-system of BDPA to a vinyl-substituted monomer, vinylene-bridged dimer, and a polymer with an average of 20 chromophores. The extension of π-conjugation results in largely reduced band gaps of 1.8 eV for the dimer and 1.7 eV for the polymer, the latter giving rise to NIR emission with a maximum at 731 nm and an appreciable quantum yield of 7 %. Electrochemical and computational studies reveal efficient delocalization of the lowest unoccupied molecular orbital (LUMO) along the pyridyl-anthracene-pyridyl axis, which results in effective electronic communication between BDPA units, selectively lowers the LUMO, and ultimately narrows the band gap. Time-resolved emission and transient absorption (TA) measurements offer insights into the pertinent photophysical processes. Extension of π-conjugation also slows down the self-sensitized formation of endoperoxides, while significantly accelerating the thermal release of singlet oxygen to regenerate the parent acenes.
Collapse
Affiliation(s)
- Jingyao Zuo
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Kanglei Liu
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Jaren Harrell
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Lujia Fang
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Piotr Piotrowiak
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Daisuke Shimoyama
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Xie K, Yin D, Yan L. Synthesis of D-A-type groups modified aza-BODIPY fluorescent dye encapsulated by amphiphilic polypeptide nanoparticles for NIR-II phototheranostics. Talanta 2024; 279:126633. [PMID: 39121551 DOI: 10.1016/j.talanta.2024.126633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
An innovative organic small molecule with a D-A structure was synthesized by connecting triphenylamine to BODIPY via a thiophene bridge. Triphenylamine and thiophene units ingeniously modulate the balance between steric hindrance and π-π interactions around the flat aza-BODIPY core. The molecule exhibits near-infrared fluorescence absorption and emits at roughly 1100 nm, featuring a significant Stokes shift. Both the molecule and its nanoparticles demonstrate high stability and achieve a remarkable 35 % photothermal conversion efficiency when conjugated with the P(OEGMA)20-P(Asp)14 copolymer. In vitro assessments show low dark toxicity and outstanding biocompatibility. Moreover, in vivo studies and photothermal therapy in mice indicate substantial tumor shrinkage and reduced recurrence, confirming its potential in cancer treatment. These results highlight the promise of this organic molecule and its nanoparticles for NIR-II imaging-guided photothermal therapy, introducing a novel approach to phototheranostic applications for cancer management.
Collapse
Affiliation(s)
- Kai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96. 230026, Anhui, PR China.
| |
Collapse
|
3
|
Polishchuk V, Kulinich A, Shandura M. Tetraanionic Oligo-Dioxaborines: Strongly Absorbing Near-Infrared Dyes. Chemistry 2024; 30:e202401097. [PMID: 38624080 DOI: 10.1002/chem.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Polymethine dyes of tetraanionic nature comprising 1,3,2-dioxaborine rings in the polymethine chain and end-groups of different electron-accepting abilities have been synthesized. They can be considered as oligomeric polymethines, where a linear conjugated π-system passes through three 1,3,2-dioxaborine units and a number of tri- and dimethine π-bridges between two end-groups. The obtained dyes exhibit near-infrared absorption and fluorescence, with molar absorption coefficients reaching as high as 564000 M-1 cm-1 in DMF, rendering them among the strongest absorbers known. The novel compounds are bright NIR fluorophores, with fluorescence quantum yields up to 0.13 in DMF. A comparative analysis of the electronic structure of the obtained dyes with respective dianionic and trianionic oligomers was conducted through quantum chemical calculations.
Collapse
Affiliation(s)
- Vladyslav Polishchuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Andrii Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Mykola Shandura
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| |
Collapse
|
4
|
Wang L, Cheng C, Li ZY, Guo X, Wu Q, Hao E, Jiao L. Nucleophilic Aromatic Substitution (S NAr) as an Approach to Challenging Nitrogen-Bridged BODIPY Oligomers. Org Lett 2024; 26:3026-3031. [PMID: 38602395 DOI: 10.1021/acs.orglett.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A series of nitrogen-bridged BODIPY oligomers were synthesized via nucleophilic aromatic substitution (SNAr) as a convenient approach. Further transformations achieved novel α,α-aryl BODIPY dimers as well as a BODIPY hexamer efficiently. These BODIPY oligomers showed good photophysical properties, such as apparent absorption and emission both in visible and near-infrared regions. Interestingly, the high air and photothermal stability, strong NIR absorption, and high photothermal conversion rates of hexamer B6 suggest potential applications in photothermal therapy.
Collapse
Affiliation(s)
- Long Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Cheng Cheng
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
5
|
Röttger SH, Patalag LJ, Hasenmaile F, Milbrandt L, Butschke B, Jones PG, Werz DB. Linear Amine-Linked Oligo-BODIPYs: Convergent Access via Buchwald-Hartwig Coupling. Org Lett 2024; 26:3020-3025. [PMID: 38564714 DOI: 10.1021/acs.orglett.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A convergent route toward nitrogen-bridged BODIPY oligomers has been developed. The synthetic key step is a Buchwald-Hartwig cross-coupling reaction of an α-amino-BODIPY and the respective halide. Not only does the selective synthesis provide control of the oligomer size, but the facile preparative procedure also enables easy access to these types of dyes. Furthermore, functionalized examples were accessible via brominated derivatives.
Collapse
Affiliation(s)
- Sebastian H Röttger
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Lukas J Patalag
- TU Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Felix Hasenmaile
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Lukas Milbrandt
- TU Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Burkhard Butschke
- Albert-Ludwigs-Universität Freiburg, Institute of Inorganic and Analytical Chemistry, Albertstr. 21, 79104 Freiburg im Breisgau, Germany
| | - Peter G Jones
- TU Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Xu J, Zhang Y, Liu J, Wang L. NIR-II Absorbing Monodispersed Oligomers Based on N-B←N Unit. Angew Chem Int Ed Engl 2023; 62:e202310838. [PMID: 37635075 DOI: 10.1002/anie.202310838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Organic molecules with near-infrared II (NIR II) light absorption are essential for many biological and opto-electronic applications. Herein, we report monodispersed oligomers as NIR II light absorber using a new molecular design strategy of resonant N-B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B-N) and boron-nitrogen coordination bond (B←N). We synthesize a series of monodispersed oligomers with thiophene-fused 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (TB), which contains resonant N-B←N unit, as the repeating unit. The TB pentamer exhibits the maximum absorption wavelength of 1169 nm, which is the longest for oligomers reported so far. Organic photodetectors (OPDs) with the TB tetramer as the electron acceptor shows the specific detectivity of 2.98×1011 Jones at 1180 nm under zero bias. This performance is among the best for NIR II OPDs. These results indicate a new kind of NIR II absorbing molecules as excellent opto-electronic materials.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
7
|
Luo H, Gao S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J Control Release 2023; 362:425-445. [PMID: 37660989 DOI: 10.1016/j.jconrel.2023.08.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Phototherapy (including photothermal therapy, PTT; and photodynamic therapy, PDT) has been widely used for cancer treatment, but conventional PTT/PDT show limited therapeutic effects due to the lack of disease recognition ability. The integration of fluorescence imaging with PTT/PDT can reveal tumor locations in a real-time manner, holding great potential in early diagnosis and precision treatment of cancers. However, the traditional fluorescence imaging in the visible and near-infrared-I regions (VIS/NIR-I, 400-900 nm) might be interfered by the scattering and autofluorescence from tissues, leading to a low imaging resolution and high false positive rate. The deeper near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging can address these interferences. Combining NIR-II fluorescence imaging with PTT/PDT can significantly improve the accuracy of tumor theranostics and minimize damages to normal tissues. This review summarized recent advances in tumor PTT/PDT and NIR-II fluorophores, especially discussed achievements, challenges and prospects around NIR-II fluorescence imaging-guided PTT/PDT for cancers.
Collapse
Affiliation(s)
- Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shuai Gao
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Wei R, Dong Y, Wang X, Li J, Lei Z, Hu Z, Chen J, Sun H, Chen H, Luo X, Qian X, Yang Y. Rigid and Photostable Shortwave Infrared Dye Absorbing/Emitting beyond 1200 nm for High-Contrast Multiplexed Imaging. J Am Chem Soc 2023. [PMID: 37216464 DOI: 10.1021/jacs.3c00594] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The shortwave infrared (SWIR) spectral region beyond 1200 nm offers optimal tissue penetration depth and has broad potential in diagnosis, therapy, and surgery. Here, we devised a novel class of fluorochromic scaffold, i.e., a tetra-benzannulated xanthenoid (EC7). EC7 absorbs/emits maximally at 1204/1290 nm in CH2Cl2 and exhibits an unparalleled molar absorptivity of 3.91 × 105 cm-1 M-1 and high transparency to light at 400-900 nm. It also exhibited high resistance toward both photobleaching and symmetry breaking due to its unique structural rigidity. It is feasible for in vivo bioimaging and particularly suitable to couple with the shorter-wavelength analogues for high-contrast multiplexing. High-contrast dual-channel intraoperative imaging of the hepatobiliary system and three-channel in vivo imaging of the intestine, the stomach, and the vasculature were showcased. EC7 is a benchmark fluorochrome for facile biomedical exploitation of the SWIR region beyond 1200 nm.
Collapse
Affiliation(s)
- Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Dong
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Wang T, Jiang Z, Liu Z. 1,4-Bisvinylbenzene-Bridged BODIPY Dimers for Fluorescence Imaging in the Second Near-Infrared Window. Org Lett 2023; 25:1638-1642. [PMID: 36862603 DOI: 10.1021/acs.orglett.3c00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Herein, we report a class of 1,4-bisvinylbenzene-bridged BODIPY dimers with fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm). These dyes show excellent NIR-II fluorescence properties and can be easily functionalized to achieve good water-solubility or tumor-targeting ability. In vivo imaging results demonstrate that these dyes have high resolution and deep-penetration NIR-II imaging ability, which enable them to be used as promising NIR-II imaging agents.
Collapse
Affiliation(s)
- Tianzhu Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Tian Y, Yin D, Yan L. J-aggregation strategy of organic dyes for near-infrared bioimaging and fluorescent image-guided phototherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1831. [PMID: 35817462 DOI: 10.1002/wnan.1831] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
With the continuous development of organic materials for optoelectronic devices and biological applications, J-aggregation has attracted a great deal of interest in both dye chemistry and supramolecular chemistry. Except for the characteristic red-shifted absorption and emission, such ordered head-to-tail stacked structures may be accompanied by special properties such as enhanced absorption, narrowed spectral bandwidth, improved photothermal and photodynamic properties, aggregation-induced emission enhancement (AIEE) phenomenon, and so forth. These excellent properties add great potential to J-aggregates for optical imaging and phototherapy in the near-infrared (NIR) region. Despite decades of development, the challenge of rationally designing the molecular structure to adjust intermolecular forces to induce J-aggregation of organic dyes remains significant. In this review, we discuss the formation of J-aggregates in terms of intermolecular interactions and summarize some recent studies on J-aggregation dyes for NIR imaging and phototherapy, to provide a clear direction and reference for designing J-aggregates of near-infrared organic dyes to better enable biological applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Youliang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Wang X, Jiang Z, Liang Z, Wang T, Chen Y, Liu Z. Discovery of BODIPY J-aggregates with absorption maxima beyond 1200 nm for biophotonics. SCIENCE ADVANCES 2022; 8:eadd5660. [PMID: 36459559 PMCID: PMC10936059 DOI: 10.1126/sciadv.add5660] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Organic dyes with absorption maxima in the second near-infrared window (NIR-II; 1000 to 1700 nm) are of great interest in biophotonics. However, because of the lack of appropriate molecular scaffolds, current research in this field is limited to cyanine dyes, and developing NIR-II-absorbing organic dyes for biophotonics remains an immense challenge. Here, we rationally designed an ethenylene-bridged BODIPY scaffold featuring excellent J-aggregation capabilities and revealed that the bridging ethylene unit is crucial for intermolecular J-coupling regulation. By integrating the electron-donating groups into the scaffold, we obtained a BODIPY dye, BisBDP2, with a J-aggregate absorption maximum of around 1300 nm. BisBDP2 J-aggregates show excellent photothermal performance, including intense photoacoustic response, and a high photothermal conversion efficiency value of 63%. In vivo results demonstrate the potential of J-aggregates for photoacoustic imaging and photothermal ablation of deep-seated tumors. This study will speed up the exploration of NIR-II-absorbing J-aggregates for future biophotonic applications.
Collapse
Affiliation(s)
- Xiaoqing Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhaolun Liang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianzhu Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhipeng Liu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Zhang C, An J, Wu J, Liu W, Rha H, Kim JS, Wang P. Structural modification of NIR-II fluorophores for angiography beyond 1300 nm: Expanding the xanthene universe. Biosens Bioelectron 2022; 217:114701. [PMID: 36115125 DOI: 10.1016/j.bios.2022.114701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Fluorescence bioimaging via the second near-infrared (NIR-II) window can provide precise images with a low background signal due to attenuated absorption and scattering in biological tissues. However, it is challenging to realize organic fluorophores' absorption/emission wavelength beyond 1300 nm depending on their intrinsic emission of monomers. Reducing parasitic aggregation caused quenching (ACQ) effect is expected as an efficient strategy to achieve fluorescence bioimaging in an ideal region. Herein, two NIR-II xanthene fluorophores (CM1 and CM2) with different side chains on identical skeletons were synthesized. Besides, their corresponding assemblies (CM1 NPs and CM2 NPs) were subsequently prepared, which exhibited distinct spectroscopic properties. Notably, CM2 NPs exhibited a significantly reduced ACQ effect with maximal absorption/emission extended to 1235/1250 nm. Molecular dynamics simulations revealed that intermolecular hydrogen bond, π-π interaction, and CH-π interaction of CM2 were essential for the reduced ACQ effect. In vivo hindlimb angiography showed that CM2 NPs could distinguish the neighboring artery and vein in high resolution. Besides, CM2 NPs could achieve angiography beyond 1300 nm and even resolve capillaries as small as 0.23 mm. This study provides a new strategy for reducing the ACQ effect by controlling different side chains of NIR-II xanthene dyes for angiography beyond 1300 nm.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
13
|
Ding Z, Gu Y, Zheng C, Gu Y, Yang J, Li D, Xu Y, Wang P. Organic small molecule-based photothermal agents for cancer therapy: Design strategies from single-molecule optimization to synergistic enhancement. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Li J, Dong Y, Wei R, Jiang G, Yao C, Lv M, Wu Y, Gardner SH, Zhang F, Lucero MY, Huang J, Chen H, Ge G, Chan J, Chen J, Sun H, Luo X, Qian X, Yang Y. Stable, Bright, and Long-Fluorescence-Lifetime Dyes for Deep-Near-Infrared Bioimaging. J Am Chem Soc 2022; 144:14351-14362. [PMID: 35905456 DOI: 10.1021/jacs.2c05826] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) fluorophores absorbing maximally in the region beyond 800 nm, i.e., deep-NIR spectral region, are actively sought for biomedical applications. Ideal dyes are bright, nontoxic, photostable, biocompatible, and easily derivatized to introduce functionalities (e.g., for bioconjugation or aqueous solubility). The rational design of such fluorophores remains a major challenge. Silicon-substituted rhodamines have been successful for bioimaging applications in the red spectral region. The longer-wavelength silicon-substituted congeners for the deep-NIR spectral region are unknown to date. We successfully prepared four silicon-substituted bis-benzannulated rhodamine dyes (ESi5a-ESi5d), with an efficient five-step cascade on a gram-scale. Because of the extensive overlapping of their HOMO-LUMO orbitals, ESi5a-ESi5d are highly absorbing (λabs ≈ 865 nm and ε > 105 cm-1 M-1). By restraining both the rotational freedom via annulation and the vibrational freedom via silicon-imparted strain, the fluorochromic scaffold of ESi5 is highly rigid, resulting in an unusually long fluorescence lifetime (τ > 700 ps in CH2Cl2) and a high fluorescence quantum yield (ϕ = 0.14 in CH2Cl2). Their half-lives toward photobleaching are 2 orders of magnitude longer than the current standard (ICG in serum). They are stable in the presence of biorelevant concentration of nucleophiles or reactive oxygen species. They are minimally toxic and readily metabolized. Upon tail vein injection of ESi5a (as an example), the vasculature of a nude mouse was imaged with a high signal-to-background ratio. ESi5 dyes have broad potentials for bioimaging in the deep-NIR spectral region.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guanyu Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Cheng Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng Lv
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yuyang Wu
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Sarah H Gardner
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Feng Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, 1111 Halei Road, Shanghai, 201203, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiao Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Key Laboratory of Chemical Biology, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
15
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR‐II Window. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jing Mu
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Ming Xiao
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Yu Shi
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xuewen Geng
- Department of Biology University of Rochester Rochester NY 14627 USA
| | - Hui Li
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yuxin Yin
- Institute of Precision Medicine Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 119074 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
16
|
Tian Y, Zhou H, Cheng Q, Dang H, Qian H, Teng C, Xie K, Yan L. Stable twisted conformation aza-BODIPY NIR-II fluorescent nanoparticles with ultra-large Stokes shift for imaging-guided phototherapy. J Mater Chem B 2022; 10:707-716. [PMID: 35015013 DOI: 10.1039/d1tb02066h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for in vivo imaging and imaging-guided phototherapy with deep penetration and high spatiotemporal resolution. It is very appealing to obtain NIR-II fluorescent probes through simple procedures and economical substrates. Herein, we developed a D-A-D' structure NIR-II photosensitizer (triphenylamine modified aza-Bodipy, TAB) based on the strong electron-withdrawing nature of borane difluoride azadipyrromethene's center (aza-BODIPY). Subsequently, halogen atoms (Br, I) were introduced to the TAB molecule, and TAB-2Br and TAB-2I were synthesized. Compared to the TAB molecule, a significant redshift in the emission wavelength, ultra-large Stokes shift (>300 nm), and enhanced singlet oxygen production capacity were acquired for the halogenated molecules. After self-assembly of TABs and an amphiphilic polypeptide POEGMA23-PAsp20, the obtained P-TAB, P-TAB-2Br, and P-TAB-2I nanoparticles exhibited excellent water solubility and biocompatibility, remarkable photothermal conversion efficiency (beyond 40%), and good resistance to photobleaching, heat, and H2O2. Under 808 nm laser irradiation, the P-TAB-2I exhibited an efficient photothermal effect and ROS generation in vitro. And in vivo experiments revealed that P-TAB-2I displayed efficient NIR-II fluorescence imaging and remarkable tumor ablation results. All of these results make TAB-2I potential organic probes for clinical NIR-II fluorescence imaging and cancer phototherapy.
Collapse
Affiliation(s)
- Youliang Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Huiting Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Quan Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Huiping Dang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Hongyun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Changchang Teng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Kai Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| | - Lifeng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzairoad 96, Hefei, 230026, Anhui, China.
| |
Collapse
|
17
|
Tian Y, Yin D, Cheng Q, Dang H, Teng C, Yan L. Supramolecular J-aggregates of aza-BODIPY by Steric and π-π Interactions for NIR-II Phototheranostic. J Mater Chem B 2022; 10:1650-1662. [PMID: 35195126 DOI: 10.1039/d1tb02820k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achieving J-aggregation of a molecule is a fascinating way to construct fluorescent imaging as well as photothermal therapy agents in the second near-infrared window. Modulation of the balance between intermolecular...
Collapse
Affiliation(s)
- Youliang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Quan Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Huiping Dang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Changchang Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
18
|
Liu BK, Teng KX, Niu LY, Yang QZ. Progress in the Synthesis of Boron Dipyrromethene (BODIPY) Fluorescent Dyes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhou W, Sarma T, Yang L, Lei C, Sessler JL. Controlled assembly of a bicyclic porphyrinoid and its 3-dimensional boron difluoride arrays. Chem Sci 2022; 13:7276-7282. [PMID: 35799810 PMCID: PMC9214847 DOI: 10.1039/d2sc01635d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
A fully conjugated cryptand-like bicyclic porphyrinoid ligand 4, incorporating three carbazole linkages and four dipyrrin moieties, was prepared via the acid-catalysed condensation of an extended 2,2′-bipyrrole analogue containing a central carbazole moiety and 3,4-diethyl-2,5-diformylpyrrole in 79% isolated yield. This new cryptand-like system acts as an effective ligand and allows for complexation of BF2 (boron difluoride) subunits. Three BODIPY arrays, containing two, three, and four BF2 subunits, namely 4·2BF2, 4·3BF2 and 4·4BF2, could thus be isolated from the reaction of 4 with BF3·Et2O in the presence of triethylamine at 110 °C, albeit in relatively low yield. As prepared, bicycle 4 is characterized by a rigid C2 symmetric structure as inferred from VT NMR spectroscopic analyses. In contrast, the three BODIPY-like arrays produced as the result of BF2 complexation are conformationally flexible and unsymmetric in nature as deduced from similar analyses. All four products, namely 4, 4·2BF2, 4·3BF2 and 4·4BF2, were characterized by means of single crystal X-ray diffraction analyses. Tetramer 4·4BF2 gives rise to a higher extinction coefficient (by 2.5 times) relative to the bis- and tris-BODIPY arrays 4·2BF2 and 4·3BF2. This was taken as evidence for stronger excitonic coupling in the case of 4·4BF2. All three BODIPY-like arrays proved nearly non-fluorescent, as expected given their conformationally mobile nature. The efficiency of reactive oxygen species (ROS) generation was also determined for the new BODIPY arrays of this study. A cryptand-like bicyclic porphyrinoid was obtained in preference over the monocyclic porphyrinoid by controlling the reaction stoichiometry and condensation conditions. The cryptand-like species supports formation of multiple 3D BODIPY-like arrays.![]()
Collapse
Affiliation(s)
- Weinan Zhou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tridib Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Liu Yang
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, USA
| |
Collapse
|
20
|
Gupta A, Chakraborty S, Ghosh D, Ramakrishnan R. Data-driven modeling of S 0 → S 1 excitation energy in the BODIPY chemical space: High-throughput computation, quantum machine learning, and inverse design. J Chem Phys 2021; 155:244102. [PMID: 34972385 DOI: 10.1063/5.0076787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Derivatives of BODIPY are popular fluorophores due to their synthetic feasibility, structural rigidity, high quantum yield, and tunable spectroscopic properties. While the characteristic absorption maximum of BODIPY is at 2.5 eV, combinations of functional groups and substitution sites can shift the peak position by ±1 eV. Time-dependent long-range corrected hybrid density functional methods can model the lowest excitation energies offering a semi-quantitative precision of ±0.3 eV. Alas, the chemical space of BODIPYs stemming from combinatorial introduction of-even a few dozen-substituents is too large for brute-force high-throughput modeling. To navigate this vast space, we select 77 412 molecules and train a kernel-based quantum machine learning model providing <2% hold-out error. Further reuse of the results presented here to navigate the entire BODIPY universe comprising over 253 giga (253 × 109) molecules is demonstrated by inverse-designing candidates with desired target excitation energies.
Collapse
Affiliation(s)
- Amit Gupta
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Sabyasachi Chakraborty
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Debashree Ghosh
- Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Raghunathan Ramakrishnan
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
21
|
Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. The Chemistry of Organic Contrast Agents in the NIR-II Window. Angew Chem Int Ed Engl 2021; 61:e202114722. [PMID: 34873810 DOI: 10.1002/anie.202114722] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/08/2022]
Abstract
Optical imaging, especially fluorescence and photoacoustic imaging, possesses non-invasiveness, high spatial and temporal resolution, and high sensitivity, etc., compared to positron emission tomography (PET) or magnetic resonance imaging (MRI). Due to the merits from the second near infrared (NIR-II) window imaging, like deeper penetration depth, high signal-to-noise ratio, high resolution, and low tissue damage, researchers devote great efforts to develop contrast agents with NIR-II absorption or emission. In this review, we summarized recently developed organic luminescent and photoacoustic materials, ranging from small molecules to conjugated polymers. Then, we systematically introduced engineering strategies and their imaging performance, classified by the skeleton cores. Finally, we elucidated the challenges and prospective of these NIR-II organic dyes for potential clinical applications. We hope our summary can inspire further development of NIR-II contrast agents.
Collapse
Affiliation(s)
- Jing Mu
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Ming Xiao
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yu Shi
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xuewen Geng
- University of Rochester, Department of Biology, UNITED STATES
| | - Hui Li
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Yuxin Yin
- Peking University Shenzhen Hospital, Institute of Precision Medicine, CHINA
| | - Xiaoyuan Chen
- National University of Singapore, School of Medicine and Faculty of Engineering, 10 Medical Dr, 117597, Singapore, SINGAPORE
| |
Collapse
|
22
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
23
|
An F, Xin J, Deng C, Tan X, Aras O, Chen N, Zhang X, Ting R. Facile synthesis of near-infrared bodipy by donor engineering for in vivo tumor targeted dual-modal imaging. J Mater Chem B 2021; 9:9308-9315. [PMID: 34714318 PMCID: PMC8616829 DOI: 10.1039/d1tb01883c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bodipy is one of the most popular dyes for bioimaging, however, a complicated synthetic protocol is needed to create and isolate ideal near-infrared (NIR) emissive Bodipy derivatives for optical bioimaging. It is noticed that the donor species impact the wavelength when the π-conjugation system of green light emissive Bodipy is elongated via a one-step reaction. Herein, several Bodipy dyes bearing different common donors are synthesized. Their optical properties confirm that both absorption and emission peaks of the synthesized Bodipy could be tuned to NIR wavelength by using stronger donors via a facile reaction. The synthesized monocarboxyl Bodipy could conjugate with aminated PEG to yield an amphiphilic polymer, which further self-assembles into a NIR nanoparticle (NP). The NIR NP exhibits preferential tumor accumulation via the enhanced permeation and retention (EPR) effect, making it useful for tumor diagnosis by both fluorescence imaging and photoacoustic tomography.
Collapse
Affiliation(s)
- Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, People's Republic of China
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10065, USA.
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xiaofang Tan
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, Jiangsu, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nandi Chen
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10065, USA.
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medicine College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China.
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Richard Ting
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10065, USA.
- Antelope Surgical, Biolabs@NYULangone, 180 Varick St. Fl 6, New York, NY 10014, USA
| |
Collapse
|
24
|
Zhu Z, Zhang X, Guo X, Wu Q, Li Z, Yu C, Hao E, Jiao L, Zhao J. Orthogonally aligned cyclic BODIPY arrays with long-lived triplet excited states as efficient heavy-atom-free photosensitizers. Chem Sci 2021; 12:14944-14951. [PMID: 34820111 PMCID: PMC8597848 DOI: 10.1039/d1sc04893g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2 -˙ under light irradiation.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Zhongxin Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
25
|
Gong Q, Cheng K, Wu Q, Li W, Yu C, Jiao L, Hao E. One-Pot Access to Ethylene-Bridged BODIPY Dimers and Trimers through Single-Electron Transfer Chemistry. J Org Chem 2021; 86:15761-15767. [PMID: 34590860 DOI: 10.1021/acs.joc.1c01824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Cu(I)-promoted oxidative dimerization of BODIPY dyes was developed to give a series of α,α- ethylene-bridged BODIPY dimers and trimers for the first time. This methodology does not need harsh conditions but relies on the singlet-electron-transfer process between alkylated BODIPYs and Cu(I) salt to generate BODIPY-based radical species, which undergo a selective radical homocoupling reaction. Moreover, these resultant dimers and trimers showed high attenuation coefficients, small line widths of the absorption and emission, and intense fluorescence.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Kai Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
26
|
Gong Q, Wu Q, Guo X, Li H, Li W, Yu C, Hao E, Jiao L. Thiophene-Fused BODIPY Dimers and Tetramers from Oxidative Aromatic Couplings as Near-Infrared Dyes. Org Lett 2021; 23:7661-7665. [PMID: 34546062 DOI: 10.1021/acs.orglett.1c02926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a straightforward, postmodification synthesis for a family of thiophene-fused BODIPY dimers and tetramers through transforming flexible sulfur bridges into coplanar thiophene fusions. FeCl3 was used as a bifunctional oxidant for both intramolecular and intermolecular oxidative aromatic coupling reactions. Oxidative fusion and dimerization gave strong red-shift absorptions from 509 nm for a BODIPY monomer to 830 nm for a tetramer.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Heng Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
27
|
Kang Z, Wu Q, Guo X, Wang L, Ye Y, Yu C, Wang H, Hao E, Jiao L. FeCl 3-promoted regioselective synthesis of BODIPY dimers through oxidative aromatic homocoupling reactions. Chem Commun (Camb) 2021; 57:9886-9889. [PMID: 34494065 DOI: 10.1039/d1cc04098g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The direct 3,3'-dimerization of BODIPYs lacking substituent groups in the 1,2,6, and 7 positions was developed by oxidative coupling with FeCl3. This regioselective dimerization was achieved for BODIPYs substituted only in the 5-position with Cl or aryl groups. Further functionalization of the 5,5'-dichloride dimer gave the corresponding pyrrole or 4-(2-aminoethyl)morpholine disubstituted dimers 2f and 2g, respectively. While dimer 2f exhibited intense NIR absorption/emission maxima at 773/827 nm in toluene, dimer 2g showed favorable lysosome-targeting NIR fluorescence in living cells.
Collapse
Affiliation(s)
- Zhengxin Kang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Long Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Yin Ye
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
28
|
Gong Q, Wu Q, Guo X, Li W, Wang L, Hao E, Jiao L. Strategic Construction of Sulfur-Bridged BODIPY Dimers and Oligomers as Heavy-Atom-Free Photosensitizers. Org Lett 2021; 23:7220-7225. [PMID: 34463517 DOI: 10.1021/acs.orglett.1c02622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient strategy for building sulfur-bridged oligo-BODIPYs based on the SNAr reaction is described. These oligo-BODIPYs showed broadband and strong visible-near-infrared (NIR) light absorption, strong intramolecular exciton coupling, and efficient intersystem crossing (ISC). Generation of 1O2 as well as O2•- under irradiation was found to give high reactive oxygen species generation efficiencies for those oligomers.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
29
|
J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat Commun 2021; 12:2376. [PMID: 33888714 PMCID: PMC8062432 DOI: 10.1038/s41467-021-22686-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
J-aggregation is an efficient strategy for the development of fluorescent imaging agents in the second near-infrared window. However, the design of the second near-infrared fluorescent J-aggregates is challenging due to the lack of suitable J-aggregation dyes. Herein, we report meso-[2.2]paracyclophanyl-3,5-bis-N,N-dimethylaminostyrl BODIPY (PCP-BDP2) as an example of BODIPY dye with J-aggregation induced the second near-infrared fluorescence. PCP-BDP2 shows an emission maximum at 1010 nm in the J-aggregation state. Mechanism studies reveal that the steric and conjugation effect of the PCP group on the BODIPY play key roles in the J-aggregation behavior and photophysical properties tuning. Notably, PCP-BDP2 J-aggregates can be utilized for lymph node imaging and fluorescence-guided surgery in the nude mouse, which demonstrates their potential clinical application. This study demonstrates BODIPY dye as an alternate J-aggregation platform for developing the second near-infrared imaging agents. J-aggregation has been proved to be an efficient strategy for the development of fluorescent imaging agents in the NIR-II spectral region but the design of appropriate J-aggregates is challenging. Here, the authors demonstrate J-aggregation of a BODIPY dye with NIR-II emission and demonstrate lymph node imaging for fluorescence guided surgery.
Collapse
|
30
|
Flores JR, Castruita-De León G, Turlakov G, Arias E, Moggio I, Montemayor SM, Torres R, Ledezma R, Ziolo RF, González-Torres J. Dual Emission of meso-Phenyleneethynylene-BODIPY Oligomers: Synthesis, Photophysics, and Theoretical Optoelectronic Study. Chemistry 2021; 27:2493-2505. [PMID: 33119951 DOI: 10.1002/chem.202004481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 11/08/2022]
Abstract
Two series of 2,5-di(butoxy)phenyleneethynylenes, one halogenated (nPEC4-X; n=2, 3, or 4) and the other boron-dipyrromethene (BODIPY) terminated (nPEC4-By; n=3, 4, or 5; By=BODIPY), were synthesized monodirectionally by the step-by-step approach and the molecular structure was corroborated by NMR spectroscopy (1 H, 13 C-DEPTQ-135, COSY, HSQC, HMBC, 11 B, 19 F) and MALDI-TOF mass spectrometry. The multiplicity and J-coupling constants of 1 H, 11 B, and 19 F/11 B NMR signals revealed, in the nPEC4-By series, that the phenyl in the meso position of BODIPY becomes electronically part of the conjugation of the phenyleneethynylene chain, whereas BODIPY is electronically isolated. The photophysical, electrochemical, and theoretical studies confirm this finding because the properties of nPEC4-By are comparable to those of the nPEC4-X oligomers and BODIPY, indicating negligible electron communication between BODIPY and the nPEC4 moieties. Nevertheless, energy transfer (ET) from nPEC4 to BODIPY was rationalized by spectroscopy and theoretical calculations. Its yield decreases with the nPEC4 conjugation length, according to the increase in distance between the two chromophores, resulting in dual emission for the longest oligomer in which ET is quenched.
Collapse
Affiliation(s)
- J Reyes Flores
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Griselda Castruita-De León
- CONACYT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Gleb Turlakov
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Sagrario M Montemayor
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Román Torres
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Raquel Ledezma
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Ronald F Ziolo
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo 140, 25294, Saltillo, Coahuila, Mexico
| | - Julio González-Torres
- Área de Física Atómica Molecular Aplicada (FAMA), Universidad Autónoma Metropolitana-Azcapotzalco CBI, Av. San Pablo 180, Col. Reynosa Tamaulipas, CD de México, C.P., 02200, Mexico
| |
Collapse
|
31
|
Merkes JM, Ostlender T, Wang F, Kiessling F, Sun H, Banala S. Tuning the optical properties of BODIPY dyes by N-rich heterocycle conjugation using a combined synthesis and computational approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj01847g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a systematic tuning of optical properties of BODIPY dyes by conjugation of nitrogen-rich heterocycles, and underlying nitrogen influence by TDDFT calculations.
Collapse
Affiliation(s)
- Jean Michel Merkes
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Forckenbeckstr 55, Aachen 52074, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue Str. 2, Bremen 28359, Germany
| | - Tobias Ostlender
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Fufang Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Forckenbeckstr 55, Aachen 52074, Germany
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Forckenbeckstr 55, Aachen 52074, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue Str. 2, Bremen 28359, Germany
| |
Collapse
|
32
|
Pascal S, David S, Andraud C, Maury O. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chem Soc Rev 2021; 50:6613-6658. [DOI: 10.1039/d0cs01221a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent advances in the field of two-photon absorbing chromophores in the short-wavelength infrared spectral range (SWIR 1100–2500 nm) are summarized, highlighting the development of optical power limiting devices in this spectral range.
Collapse
Affiliation(s)
- Simon Pascal
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Sylvain David
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Chantal Andraud
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Olivier Maury
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| |
Collapse
|
33
|
Wu Q, Jia G, Tang B, Guo X, Wu H, Yu C, Hao E, Jiao L. Conformationally Restricted α, α Directly Linked BisBODIPYs as Highly Fluorescent Near-Infrared Absorbing Dyes. Org Lett 2020; 22:9239-9243. [DOI: 10.1021/acs.orglett.0c03441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Guowei Jia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
34
|
Wu Q, Zhu Y, Fang X, Hao X, Jiao L, Hao E, Zhang W. Conjugated BODIPY Oligomers with Controllable Near-Infrared Absorptions as Promising Phototheranostic Agents through Excited-State Intramolecular Rotations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47208-47219. [PMID: 33035047 DOI: 10.1021/acsami.0c11701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated molecules with coplanar strong donor and acceptor (D-A) units have been widely used in the design of near-infrared (NIR) photothermal agents to increase an absorption band through intramolecular charge transfer and to control intramolecular motions in aggregated states. However, such conjugated D-A systems have strong dipolar moments and intermolecular interactions, which may inhibit other channels of photothermal conversion and are often susceptible to nucleophiles, especially in the presence of light irradiation. Now, we report a molecular guideline to develop novel NIR organic photothermal nanoagents based on conjugated boron dipyrromethene (BODIPY) oligomers. This oligomerization is helpful not only for their tunable NIR absorptions in the ground state with distinctly redshifted absorption maxima up to 1002 nm and high extinction coefficients but also for their highly efficient photothermal conversion because of the possible motion of the BODIPY motifs around the ethene linked group in the excited state. These oligomers were fabricated as ultra-photostable nanoagents for multiple imaging-guided phototherapies, which efficiently accumulated in tumors, and gave complete tumor ablation with NIR laser irradiation. This strategy of "ground-state conjugation, excited-state rotation" provides a novel guideline to develop advanced theranostic molecules with NIR absorption.
Collapse
Affiliation(s)
- Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yucheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingbao Fang
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiangyu Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|