1
|
Bouda M, Bertke JA, Wolf C. Organocatalytic Asymmetric Conjugate Addition of Fluorooxindoles to Quinone Methides. J Org Chem 2024; 89:6100-6105. [PMID: 38619814 PMCID: PMC11077483 DOI: 10.1021/acs.joc.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Fluorooxindoles undergo asymmetric Michael addition to para-quinone methides under phase-transfer conditions with 10 mol% of a readily available cinchona alkaloid ammonium catalyst. This reaction affords sterically encumbered, multifunctional fluorinated organic compounds displaying two adjacent chirality centers with high yields, ee's and dr's.
Collapse
Affiliation(s)
- Maria Bouda
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
2
|
Chen Y, Zhang C, Wang K, Li M, Tang H, Cheng W, Yin J, Yi W. Cu(I)-Catalyzed Three-Component Annulation for the Synthesis of 3-Acyl Imidazo[1, 5- a]Pyridines from 2-Pyridinyl-Substituted p-Quinone Methides, Terminal Alkynes, and TsN 3 Using O 2 as the Oxygen Source. J Org Chem 2024; 89:5423-5433. [PMID: 38557074 DOI: 10.1021/acs.joc.3c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Currently, most conventional methods to achieve imidazo[1,5-a]pyridines have limitations for the synthesis of 3-acyl imidazo[1,5-a]pyridines. Herein, a novel and efficient Cu(I)-catalyzed three-component annulation method for the synthesis of valuable 3-acyl imidazo[1,5-a]pyridines by the reaction of 2-pyridinyl-substituted p-QMs, terminal alkynes, and TsN3 in the presence of O2 under mild conditions have successfully been developed. The investigation indicated that molecular oxygen (O2) and TsN3, respectively, serving as oxygen and nitrogen sources, were essential for the successful completion of the reaction system.
Collapse
Affiliation(s)
- Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Chuanhao Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Hao Tang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Wen Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jun Yin
- Shanghai No.4 Reagent Chemical Co., Ltd., Shanghai 201512, P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
3
|
Wang N, Huang Y, Zi Y, Wang M, Huang W. P(NMe 2) 3-Mediated Regioselective N-Alkylation of 2-Pyridones via Direct Deoxygenation of α-Keto Esters. J Org Chem 2024; 89:3657-3665. [PMID: 38366991 DOI: 10.1021/acs.joc.3c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
A practical and regioselective direct N-alkylation of 2-pyridones is enabled by use of α-keto esters in the P(NMe2)3-mediated deoxygenation process. The reaction proceeds under mild conditions to produce N-alkylated 2-pyridones with high selectivity and generality, and the protocol is shown to be applicable for the scale-up synthesis, which makes it promising for practical applications.
Collapse
Affiliation(s)
- Nan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yuanyuan Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
4
|
Jeong I, Kim HE, Choi JH, Chung WJ. Relayed Heteroatom Group Transfer: A Structural Reorganization between Bisthioester and Triaminophosphine to α,α-Disulfenylamide. Org Lett 2023; 25:9076-9081. [PMID: 38079454 DOI: 10.1021/acs.orglett.3c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Simultaneous multiple displacements of organic molecules can lead to a large structural reconstruction with increased complexity that would be difficult to access otherwise. Whereas double displacement such as olefin metathesis is well-established, higher-order versions remain much more challenging, because of their intrinsic thermodynamic disadvantages. Here, we describe a newly discovered relayed heteroatom group transfer process between bisthioesters and triaminophosphines as an unusual example of a formal triple displacement. Through the oxygen/nitrogen exchange between the two simple starting materials, in addition to the 1,2-sulfur migration of a putative carbene intermediate, an organized relocation of the O/S/N groups proceeded to give a variety of α,α-disulfenylamides with excellent efficiency under ambient conditions. The experimental and computational mechanistic studies revealed the sequence of the relayed group shifts via an α,α-disulfenyl phosphonium enolate intermediate as well as the dual role of triaminophosphine as both an oxygen acceptor and a nitrogen donor.
Collapse
Affiliation(s)
- Ilju Jeong
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
5
|
Huang Y, Wang N, Wu ZG, Wu X, Wang M, Huang W, Zi Y. Sequential In Situ-Formed Kukhtin-Ramirez Adduct and P(NMe 2) 3-Catalyzed O-Phosphination of α-Dicarbonyls with P(O)-H. Org Lett 2023; 25:7595-7600. [PMID: 37830918 DOI: 10.1021/acs.orglett.3c02563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
O-Phosphination of α-dicarbonyls via sequential in situ formation of a Kukhtin-Ramirez adduct and a P(NMe2)3-catalyzed process has been exploited for the synthesis of α-phosphoryloxy carbonyls. A range of P(O)-H derivatives, including diarylphosphine oxides, arylphosphinates, and phosphinates, are competent candidates to be introduced into the α-dicarbonyls in this transformation, and various α-phosphoryloxy carbonyls are obtained. This approach possesses advantages of mild conditions, simple operations, atom economy, high efficiency, and gram-scale synthesis, which make it promising in the synthesis toolbox.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xinxing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
6
|
Wang K, Li J, Zhang H, Chen Y, Li M, Xu J, Liao B, Yi W. DMSO-promoted direct δ-selective arylation of p-quinone methenylpiperidine bearinides to generate fuchsones under metal-free conditions by employing p-QMs themselves or substituted phenols as aryl sources. Org Biomol Chem 2023; 21:7151-7157. [PMID: 37609782 DOI: 10.1039/d3ob01018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Fuchsones have wide applications in modern society. Present methods for generating fuchsones have many disadvantages and there are significant limitations for further exploration of fuchsone applications. Herein, we describe a DMSO-promoted direct δ-selective arylation of p-QMs to synthesize symmetrical and unsymmetrical fuchsones under metal-free conditions by employing p-QMs themselves or substituted phenols as aryl sources. As unprecedented methods, these novel strategies present a great advantage and significance for further exploration of fuchsones and the development of new applications.
Collapse
Affiliation(s)
- Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jingping Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Junju Xu
- College of Tabacco Science, Yunnan Agricultural University, Kunming 650201, P. R. China.
- Key Laboratory of Sustainable Utilization of Plateau characteristic spice plant resources, Education Department of Yunnan Province 650201, P. R. China
| | - Benren Liao
- Shanghai No. 4 Reagent Chemical Co., Ltd, Shanghai 201512, P. R. China.
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| |
Collapse
|
7
|
Debnath B, Sarkar T, Karjee P, Purkayastha SK, Guha AK, Punniyamurthy T. Palladium-Catalyzed Annulative Coupling of Spirovinylcyclopropyl Oxindoles with p-Quinone Methides. J Org Chem 2023. [PMID: 37437136 DOI: 10.1021/acs.joc.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pd-catalyzed annulative coupling of spirovinylcyclopropyl oxindoles with p-quinone methides has been accomplished via cascade carbon-carbon bond formation to afford bis-spirooxindole scaffolds. The mild reaction conditions, diastereoselectivity, functional group diversity, post-synthetic transformations, and mechanistic studies using DFT calculations are the important practical features.
Collapse
Affiliation(s)
- Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India
| | | |
Collapse
|
8
|
Gaikwad RA, Savekar AT, Waghmode SB. Metal-Free Approach for Oxa-spirocyclohexadienones through [3 + 2]/[4 + 2] ipso-Cyclization of para-Quinone Methides with Halo Alcohols. J Org Chem 2023. [PMID: 37406306 DOI: 10.1021/acs.joc.3c00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
A facile one-pot metal-free, base-mediated formal [3 + 2] and [4 + 2] dearomative ipso-cycloaddition of para-quinone methides (p-QMs) with halo alcohols has been designed for the efficient construction of 2-oxa-spirocyclohexadienones in excellent yield under mild reaction conditions. The commercial availability of the bases, reagents, and convenient reaction procedure makes it an attractive method for ipso-cyclization.
Collapse
Affiliation(s)
- Ramesh A Gaikwad
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Amol T Savekar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
9
|
Sar S, Ghorai P. An Intramolecular Umpolung Cascade Kukhtin-Ramirez Reaction/Michael Addition-Initiated Cyclization: Stereoselective Synthesis of Tetrasubstituted Cyclopropane Fused 1-Indanones. Org Lett 2023; 25:1946-1951. [PMID: 36920108 DOI: 10.1021/acs.orglett.3c00494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Herein, we disclose a fascinating highly stereoselective P(NMe2)3 mediated intramolecular deoxygenative umpolung cascade Michael addition-initiated cyclopropanation with a diverse substrate adaptability. This methodology creates a new horizon for expedient access to valuable 6,5,3-fused scaffolds having an all-carbon quaternary stereocenter via Kukhtin-Ramirez (K-R) adduct formation, with excellent diastereoselectivity and yields under metal-free ambient conditions. A few functional group transformations have also been performed successfully. Additionally, an asymmetric catalytic attempt using (R)-(+)-H8-BINOL has delivered good enantioselectivity.
Collapse
Affiliation(s)
- Suman Sar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
10
|
Zhu ZQ, Wu TF, Pan HP, Peng JB, Ma AJ, Zhang XZ. Bismuth(III)-Catalyzed 1,8-Addition/Cyclization/Rearrangement of Propargylic para-Quinone Methides with 2-Vinylphenol: Synthesis of Indeno[2,1- c]chromenes. Org Lett 2023. [PMID: 36808990 DOI: 10.1021/acs.orglett.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The unique reactivity of in situ generated propargylic para-quinone methides as a new type of five-carbon synthon has been discovered by a novel bismuth(III)-catalyzed tandem annulation reaction. This 1,8-addition/cyclization/rearrangement cyclization cascade reaction is characterized by unusual structural reconstruction of 2-vinylphenol, involving cleavage of the C1'═C2' bond and formation of four new bonds. This method provides a convenient and mild approach to generate synthetically important functionalized indeno[2,1-c]chromenes. The mechanism of the reaction is proposed from several control experiments.
Collapse
Affiliation(s)
- Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Teng-Fei Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
11
|
Ali A, Harit HK, Devi M, Ghosh D, Singh RP. Ring Expansion of Isatins via 1,2-Phospha-Brook Rearrangement: A Route to the Synthesis of 2-Quinolinone-Derived p-Quinone Methides. J Org Chem 2022; 87:16313-16327. [PMID: 36459618 DOI: 10.1021/acs.joc.2c01929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A Lewis acid-mediated one-carbon homologation approach to installing a 2-quinolinone core embedded with para-quinone methides, in a high yield of up to 92%, and with high regioselectivity has been developed. Also, post-synthetic modifications, including C-P, C-S, and C-C bond formations, have been demonstrated by the 1,6-addition of suitable nucleophiles. Further, cyclopropanation of 2-quinolinone-embedded p-QM is also demonstrated affording a contiguous quaternary spiro center.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Harish K Harit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Manju Devi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
12
|
Yu KY, Ge XM, Fan YJ, Liu XT, Yang X, Yang YH, Zhao XH, An XT, Fan CA. Iron(III)-catalyzed tandem annulation of indolyl-substituted p-quinone methides with ynamides for the synthesis of cyclopenta[ b]indoles. Chem Commun (Camb) 2022; 58:8710-8713. [PMID: 35833607 DOI: 10.1039/d2cc03252j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The unique reactivity of indolyl-substituted p-QMs as a new type of two-carbon synthon has been explored for the first time in a novel iron(III)-catalyzed tandem annulation. This (2+2) annulation/retro-4π electrocyclization/imino-Nazarov cyclization cascade reaction is characterized by an unusual structural reconstruction of indolyl-substituted p-QMs, leading to an expeditious assembly of synthetically important functionalized cyclopenta[b]indoles.
Collapse
Affiliation(s)
- Ke-Yin Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Xiao-Min Ge
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Yi-Jun Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Xiao-Tao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Yu-Han Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China.
| |
Collapse
|
13
|
Xiong B, Shang W, Xu W, Liu Y, Tang KW, Wong WY. Acid‐catalyzed Regioselective Synthesis of α‐Diarylmethyl Substituted Phenols and para‐Quinone Methides in Water. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biquan Xiong
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Wenli Shang
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Weifeng Xu
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Yu Liu
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Ke-Wen Tang
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology Hung Hom Hong Kong HONG KONG
| |
Collapse
|
14
|
Qu CH, Gao LX, Tang Y, Liu Y, Luo XQ, Song GT. Metal-Free Reductive Coupling of para-Quinone Methides with 4-Cyanopyridines Enabled by Pyridine-Boryl Radicals: Access to Pyridylated Diarylmethanes with Anti-Cancer Activity. Chemistry 2022; 28:e202200264. [PMID: 35301762 DOI: 10.1002/chem.202200264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a streamlined protocol to produce pyridylated diarylmethanes through pyridine-boryl radical induced reductive coupling between para-quinone methides (p-QMs) and 4-cyanopyridines using bis(pinacolato)diboron (B2 pin2 ) as a templated reagent. The metal-free process is characterized by an operationally simple approach, excellent chemoselectivity (1,2- vs. 1,6-selectivity), and a broad substrate scope with good functional group compatibility. The mechanistic studies provided important insights into the reductive cross-coupling process between diarylmethyl radical and pyridine-boryl radical. Moreover, part of the obtained pyridylated diarylmethane products were screened against a panel of cancer cell lines, and 3 v was confirmed to significantly inhibit the proliferation of head and neck squamous cell carcinoma (HNSCC) cells. This method offers a platform for the preparation of new lead compounds with antitumor activity.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Li-Xia Gao
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yan Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Xiao-Qin Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| |
Collapse
|
15
|
Li J, Wang K, Wu J, Zhang H, Chen Y, Liu Q, Xu J, Yi W. Elemental Sulfur‐Promoted Synthesis of 4‐Hydroxybenzophenones from
p
‐Quinone Methides under Metal‐Free Condition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingping Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jiayi Wu
- Shanghai Ganquan Foreign Languages Middle School 200065 Shanghai P. R. China
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yan Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Qinglei Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Junju Xu
- College of Tabacco Science Yunnan Agricultural University Key Laboratory of Sustainable Utilization of Plateau Characteristic Spice Plant Resources Education Department of Yunnan Province 650201 Kunming P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
16
|
Son Y, Hwang S, Bak S, Kim HE, Choi JH, Chung WJ. α-Fluoroamine synthesis via P(III)-mediated deoxygenative geminal fluorosulfonimidation of 1,2-diketones. Org Biomol Chem 2022; 20:3263-3267. [PMID: 35354199 DOI: 10.1039/d2ob00498d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A deoxygenative geminal fluorosulfonimidation of 1,2-diketones was achieved for the synthesis of tetrasubstituted α-fluoroamines under mild conditions. In this study, a transition metal-free formal N-F insertion of N-fluorobenzenesulfonimide was enabled via the Kukhtin-Ramirez reaction employing a dealkylation-resistant P(III) reagent developed in our laboratory. Computational analysis was also performed to obtain a general mechanistic picture, which explained the reactivity and selectivity for this type of reaction.
Collapse
Affiliation(s)
- Yeri Son
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sunjoo Hwang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sujin Bak
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
17
|
Ali A, Jajoria R, Harit HK, Singh RP. Diastereoselective 1,6-Addition of α-Phosphonyloxy Enolates to para-Quinone Methides. J Org Chem 2022; 87:5213-5228. [PMID: 35378040 DOI: 10.1021/acs.joc.2c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The addition of α-ketoamide to p-quinone methide initiated by dialkylphosphite in the presence of organic base 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) is explored. Coupling of dialkylphosphites to α-ketoamides in the presence of a base follows [1,2]-phospha-Brook rearrangement, generating corresponding α-phosphonyloxy enolates that are subsequently seized by p-quinone methides (p-QMs). The two-step one-pot 1,6-conjugate addition provides effective access to a series of isatin-incorporated phosphate-bearing 1,6-adducts having two vicinal tertiary carbons with up to 90% yield and >20:1 dr.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Raveena Jajoria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harish K Harit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
18
|
Asahara H, Bonkohara A, Takagi M, Iwai K, Ito A, Yoshioka K, Tani S, Umezu K, Nishiwaki N. Development of a synthetic equivalent of α,α-dicationic acetic acid leading to unnatural amino acid derivatives via tetrafunctionalized methanes. Org Biomol Chem 2022; 20:2282-2292. [PMID: 35234775 DOI: 10.1039/d1ob02482e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diethyl mesoxalate (DEMO) exhibits high electrophilicity and accepts the nucleophilic addition of a less nucleophilic acid amide to afford N,O-hemiacetal. However, our research showed that elimination of the amide moiety proceeded more easily than dehydration upon treatment with a base. This problem was overcome by reacting DEMO with an acid amide in the presence of acetic anhydride to efficiently obtain N,O-acetal. Acetic acid was eliminated leading to the formation of N-acylimine in situ upon treatment with the base. N-Acylimine is also electrophilic, accepting the second nucleophilic addition by pyrrole or indole to form α,α-disubstituted malonates. Subsequent hydrolysis followed by decarboxylation resulted in (α-indolyl-α-acylamino)acetic acid formation; homologs of tryptophan. Through this process, DEMO serves as a synthetic equivalent of α,α-dicationic acetic acid to facilitate nucleophilic introduction of the two substituents.
Collapse
Affiliation(s)
- Haruyasu Asahara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Atsushi Bonkohara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Masaya Takagi
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Kento Iwai
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Kotaro Yoshioka
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Shinki Tani
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Kazuto Umezu
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
19
|
Qu C, Huang R, Li Y, Liu T, Chen Y, Song G. Selective sulfonylation and isonitrilation of para-quinone methides employing TosMIC as a source of sulfonyl group or isonitrile group. Beilstein J Org Chem 2021; 17:2822-2831. [PMID: 34925621 PMCID: PMC8649203 DOI: 10.3762/bjoc.17.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 11/23/2022] Open
Abstract
Chemoselective sulfonylation and isonitrilation reactions for the divergent synthesis of valuable diarylmethyl sulfones and isonitrile diarylmethanes starting from easy-to-synthesize para-quinone methides (p-QMs) and commercially abundant p-toluenesulfonylmethyl isocyanide (TosMIC) by using respectively zinc iodide and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as catalysts were developed. The distinguishing feature of this method is that TosMIC plays a dual role from the same substrates in the reaction: as a sulfonyl source or as an isonitrile source. The synthetic utility of this protocol was also demonstrated in the synthesis of difluoroalkylated diarylmethane 5 and diarylmethane ketone derivatives 6 and 7, which are important core structures in natural products and medicines.
Collapse
Affiliation(s)
- Chuanhua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Guiting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
20
|
Pan HP, Zhu ZQ, Qiu ZW, Liu HF, Ma JD, Li BQ, Feng N, Ma AJ, Peng JB, Zhang XZ. Dearomatization of 2,3-Disubstituted Indoles via 1,8-Addition of Propargylic (Aza)- para-Quinone Methides. J Org Chem 2021; 86:16518-16534. [PMID: 34714074 DOI: 10.1021/acs.joc.1c01857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dearomatization of indole is a useful strategy to access indolimines: a motif widely exists in biologically active molecules and natural products. Herein, an efficient method for the dearomatization of 2,3-disubstituted indoles to generate diverse indolimines with tetrasubstituted allenes is described. This work accomplishes dearomatization of 2,3-disubstituted indoles through 1,8-addition of (aza)-para-quinone methides, which are generated in situ from propargylic alcohols. A series of synthetically useful indolimines containing quaternary carbon centers and tetrasubstituted allenes can be accessed in good yields (up to 99%). Additionally, the separability of product isomers, diversified product transformations, and easy scale-up of the reaction demonstrate the potential application of this method.
Collapse
Affiliation(s)
- Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jiong-Dong Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
21
|
Singh G, Pandey R, Pankhade YA, Fatma S, Anand RV. Construction of Oxygen- and Nitrogen-based Heterocycles from p-Quinone Methides. CHEM REC 2021; 21:4150-4173. [PMID: 34369640 DOI: 10.1002/tcr.202100137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
In the last few years, there has been an explosive growth in the area of para-quinone methide (p-QM) chemistry. This boom is actually due to the unique reactivity pattern of p-QMs, and also their remarkable synthetic applications. In fact, p-QMs serve as synthons for unsymmetrical diaryl- and triarylmethanes, and also for the construction of diverse range of carbocycles and heterocycles. In the last few years, a wide range of structurally complex heterocyclic frameworks could be accessed through the synthetic transformations of structurally modified stable p-QMs. Therefore, the main focus of this review article is to cover the recent advancements in the transition-metal, Lewis acid and base-catalyzed/mediated synthetic transformations of the stable p-quinone methides (p-QMs) to oxygen- and nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| |
Collapse
|
22
|
Luo C, Zhou T, Wang W, Han P, Jing L. An Efficient Approach to Access 2,2‐Diarylanilines via Visible‐Light‐Promoted Decarboxylative Cross‐Coupling Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cong Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| | - Tongyao Zhou
- Pharmaceutical Research Institute Wuhan Institute of Technology No.206, Guanggu 1st road Wuhan 430205 P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute Wuhan Institute of Technology No.206, Guanggu 1st road Wuhan 430205 P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University No.1 Shi Da Road Nanchong 637009 P. R. China
| |
Collapse
|
23
|
Yu KY, Deng YH, Ge XM, An XT, Shu PF, Cao YX, Zhao XH, Fan CA. Tandem (2 + 2) Annulation/Retro-4π Electrocyclization/Imino-Nazarov Cyclization Reaction of p-Quinone Methides with Ynamides: Expeditious Construction of Functionalized Aminoindenes. Org Lett 2021; 23:5885-5890. [PMID: 34279973 DOI: 10.1021/acs.orglett.1c02003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new tandem annulation of p-quinone methides (p-QMs) with ynamides is described. This cascade reaction features a unique combination of (2 + 2) annulation, retro-4π electrocyclization, and imino-Nazarov cyclization, wherein vinyl p-quinone methides (p-VQMs) as one of the key intermediates have been identified chemically. Significantly, an unusual structural reconstruction of p-QMs involving the cleavage of the C5-C6 bond and the late-stage formation of the C4-C6 bond is involved, leading to a methodology development for the construction of functionalized aminoindenes.
Collapse
Affiliation(s)
- Ke-Yin Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiao-Min Ge
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Ye-Xing Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
24
|
Gulotty EM, Rodriguez KX, Parker EE, Ashfeld BL. Oxyphosphonium Enolate Equilibria in a (4+1)-Cycloaddition Approach toward Quaternary C3-Spirooxindole Assembly. Chemistry 2021; 27:10349-10355. [PMID: 33861491 DOI: 10.1002/chem.202100355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 01/11/2023]
Abstract
An efficient and convergent (4+1)-cycloaddition strategy toward the construction of spirooxindole benzofurans that involves the intermediacy of an isatin-derived oxyphosphonium enolate is presented. Mechanistic investigations employing in situ NMR analysis of the reaction mixture revealed a correlation between phosphonium enolate structure and product distribution that was heavily influenced by the solvent and reaction temperature.
Collapse
Affiliation(s)
- Eva M Gulotty
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kevin X Rodriguez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erin E Parker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
25
|
Sulfide‐Catalyzed Diastereoselective Spirocyclopropanation: Constructing Spiro‐cyclopropanyl‐pyrazolones From α‐Arylidenepyrazolones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Qiu ZW, Li BQ, Liu HF, Zhu ZQ, Pan HP, Feng N, Ma AJ, Peng JB, Zhang XZ. Formal (3 + 4)-Annulation of Propargylic p-Quinone Methides with 2-Indolylmethanols: Synthesis of Polysubstituted Indole-Fused Oxepines. J Org Chem 2021; 86:7490-7499. [PMID: 34004118 DOI: 10.1021/acs.joc.1c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel Brønsted acid catalyzed 1,8-addition mediated (3 + 4)-annulation of in situ generated propargylic p-quinone methides with 2-indolylmethanols is described. This method provides a convenient and mild approach to structurally interesting and synthetically important polysubstituted indole-fused oxepines in high yields. Moreover, 2-indolylmethanols as four-atom synthons in the (3 + 4)-annulations under Brønsted acid conditions have been explored for the first time.
Collapse
Affiliation(s)
- Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| |
Collapse
|
27
|
Qiu ZW, Xu XT, Pan HP, Jia ZS, Ma AJ, Peng JB, Du JY, Feng N, Li BQ, Zhang XZ. Brønsted Acid-Catalyzed Formal (3+3)-Annulation of Propargylic (Aza)- para-Quinone Methides with 4-Hydroxycoumarins and 1,3-Dicarbonyl Compounds. J Org Chem 2021; 86:6075-6089. [PMID: 33820419 DOI: 10.1021/acs.joc.0c02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we describe a highly effective 1,8-conjugate-addition-mediated formal (3+3)-annulation of (aza)-para-quinone methides in situ generated from propargylic alcohols with 4-hydroxycoumarins and 1,3-dicarbonyl compounds under the catalysis of a Brønsted acid. This methodology affords efficient and practical access to synthetically important and highly functionalized pyranocoumarins and pyrans in excellent yields under mild conditions. Importantly, these products exhibit impressive inhibitory activity toward α-glucosidase.
Collapse
Affiliation(s)
- Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Zhen-Sheng Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
28
|
Tan P, Wang H, Wang SR. Nucleophilic Migratory Cyclopropenation of Activated Alkynes: A Nonmetal Approach to Unbiased Cyclopropenes. Org Lett 2021; 23:2590-2594. [PMID: 33754741 DOI: 10.1021/acs.orglett.1c00498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An unprecedented reductive [2 + 1] annulation of α-keto esters with alkynones mediated by P(NMe2)3 is described. Although this nonmetal cyclopropenation is a nucleophilic process, attributed to the ester migration via a formal [2 + 2] cycloaddition reaction of Kukhtin-Ramirez adducts and alkynones followed by a fragmentation, cyclopropenes with an unbiased alkene scaffold are formed in good to excellent yields, thus providing a promising complementarity to electrophilic metal-catalyzed cyclopropenation.
Collapse
Affiliation(s)
- Pengwei Tan
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Haoran Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200241, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, China
| |
Collapse
|
29
|
Qiu Y, Lu K, Wei B, Qian Z, He Z. P III-Mediated Intramolecular Cyclopropanation and Synthesis of Cyclopropa[ c]coumarins. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Zuo HD, Ji XS, Guo C, Tu SJ, Hao WJ, Jiang B. Cu-Catalyzed radical-triggered spirotricyclization of enediynes and enyne-nitriles for the synthesis of pentacyclic spiroindenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01640c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new copper-catalyzed radical-triggered fluoromethylation-spirotricyclization of enediyne- and enyne-nitrile-containing para-quinone methides (p-QMs) was reported for the first time, and used to produce a series of hitherto unreported pentacyclic spiroindenes.
Collapse
Affiliation(s)
- Hang-Dong Zuo
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- School of Chemistry & Materials Science
| | - Xiao-Shuang Ji
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Cheng Guo
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
31
|
Qu CH, Song GT, Huang JH, Huang R, Chen Y, Liu T, Tang DY, Xu ZG, Chen ZZ. Tandem isonitrile insertion/azacyclopropylidene-annulated cyclohexenone–tropone rearrangement of p-QMs and TosMIC: de novo synthesis of pyrrolotropones with anti-cancer activity. Org Chem Front 2021. [DOI: 10.1039/d1qo01256h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TosMIC causes ring expansion of p-QMs: highly substituted pyrrolotropones are rapidly assembled in a domino process mediated by DBU. The utility of the method was highlighted by follow-up transformation and biological activity identification.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jiu-Hong Huang
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Chen
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|