1
|
Hu J, Liu J, Cui W, Zheng L, Wang R, Liu ZQ, Pu S. Rh(III)-catalyzed [4 + 1] annulation of 1-arylindazolones with alkynyl cyclobutanols: access to indazolo[1,2- a]indazolones. Org Biomol Chem 2024; 22:6500-6505. [PMID: 39101292 DOI: 10.1039/d4ob01067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A convenient and efficient synthesis of structurally diverse indazolo[1,2-a]indazolones via a Rh(III)-catalyzed [4 + 1] annulation of 1-arylindazolones with alkynyl cyclobutanols has been achieved by combining C-H and C-C bond cleavage. This cascade reaction features readily available starting materials, good functional group tolerance, broad substrate scope, and excellent atom-economy.
Collapse
Affiliation(s)
- Jiang Hu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Wenwen Cui
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, P. R. China
| |
Collapse
|
2
|
Chen Y, Huang S, Wang T, Li J, Zhao Y, Zhou Q, Wei L, Yang X. Chiral Brønsted Acid-Catalyzed Kinetic Resolution of Sulfoximines for the Synthesis of Benzothiadiazine-1-Oxides. J Org Chem 2024. [PMID: 38788145 DOI: 10.1021/acs.joc.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Benzothiadiazine-1-oxide scaffolds with S-stereogenic centers are prevalent in bioactive and pharmaceutical molecules. Reported works mainly focused on the metal-catalyzed asymmetric C-H amination/cyclization reaction for the synthesis of benzothiadiazine-1-oxides. Here, we reported a chiral phosphoric acid-catalyzed kinetic resolution of sulfoximines, providing chiral benzothiadiazine-1-oxides and recovered chiral sulfoximines with moderate to good enantioselectivities (s factors up to 36.6).
Collapse
Affiliation(s)
- Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shihao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
3
|
Sarkar S, Pal S, Santra S, Zyryanov GV, Majee A. Visible-Light-Triggered Synthesis of N-α-Ketoacylated Sulfoximines by Denitrogenative and Oxidative Functionalization of Vinyl Azides. J Org Chem 2024. [PMID: 38757898 DOI: 10.1021/acs.joc.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have introduced a sulfoximidation reaction initiated by visible light between α-phenyl vinyl azides and NH-sulfoximines. The cost-effective and readily accessible hypervalent iodine reagent (PIDA) easily promoted the oxidative sulfoximidation process to afford N-α-ketoacylated sulfoximines in good to high yields, involving the formation of two new C-O bonds and one C-N bond. Additionally, the protocol offers noteworthy advantages, including its metal-free and photocatalyst-free reaction and its broad substrate compatibility.
Collapse
Affiliation(s)
- Subhankar Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, Bolpur 731235, India
| | - Satyajit Pal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, Bolpur 731235, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russian Federation
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, Bolpur 731235, India
| |
Collapse
|
4
|
Wu Y, Shi G, Liu Y, Kong Y, Wu M, Wang D, Wu X, Shang Y, He X. A rhodium-catalyzed cascade C-H activation/annulation strategy for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines. Org Biomol Chem 2024; 22:3523-3532. [PMID: 38606489 DOI: 10.1039/d4ob00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
A cascade annulation strategy triggered by rhodium(III)-catalyzed C-H activation has been reported for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines from free NH-sulfoximines with maleimides under mild conditions. Without the need for inert atmosphere protection, a broad range of sulfoximines with maleimides were well tolerated, producing diverse fused-thiazine derivatives in moderate to good yields. Additionally, the late-stage transformation of the target product demonstrated the potential synthetic value of this protocol.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Guanghao Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
- Jiangsu Xidi Pharmaceuticals Co., Ltd, Nantong, 226000, P. R. China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
5
|
Chakraborty N, Rajbongshi KK, Gondaliya A, Patel BK. PIDA/I 2-mediated photo-induced aerobic N-acylation of sulfoximines with methylarenes. Org Biomol Chem 2024; 22:2375-2379. [PMID: 38436055 DOI: 10.1039/d4ob00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A visible-light-promoted, PIDA/I2-mediated acylation of NH-sulfoximines with methylarenes as an acyl source has been achieved. This transition metal and photosensitizer-free approach provides easy access to N-acylsulfoximines via oxidative coupling of sulfoximines with easily available methylarenes without using any peroxide source. Mechanistic investigations suggest the intermediacy of radicals and the importance of molecular oxygen.
Collapse
Affiliation(s)
- Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Kamal K Rajbongshi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
- Department of Chemistry, Cotton University, Guwahati, 781001, Assam, India
| | - Amisha Gondaliya
- Department of Chemistry, Indrashil University, Kadi, Rajpur, 382740, Gujarat, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Ren Y, Mo L, Wang Y, Yu L, Yin M, Xiong Z, Teng F, He Y. Modular Synthesis of 1,2-Benzothiazines and 1,2-Benzothiazine 1-Imines via Palladium-Catalyzed C-H/C-C Activation Reactions. J Org Chem 2024; 89:3345-3358. [PMID: 38372225 DOI: 10.1021/acs.joc.3c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In this study, a modular approach toward cyclic sulfoximines and sulfondiimines via palladium-catalyzed intramolecular C-H/C-C activation reactions was reported. Various 1,2-benzothiazines including bicyclic, tricyclic, highly fused ones, ones of the seven-membered ring, along with 1,2-benzothiazine 1-imines were accessed in good yields. KIE experiment demonstrated that the C-H bond cleavage at the position ortho to the sulfoximine group is not the rate-determining step in the coupling reaction.
Collapse
Affiliation(s)
- Yifan Ren
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Lisha Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Limin Yu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Minhai Yin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
7
|
Qi Z, Wen S, Hao Li, Liu S, Jiang D. Palladium-Catalyzed Aminosulfonylation of ortho-Iodoanilines with the Insertion of Sulfur Dioxide for the Synthesis of 3,4-Dihydro-benzothiadiazine 1,1-Dioxides. Org Lett 2023; 25:7322-7326. [PMID: 37791747 DOI: 10.1021/acs.orglett.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A simple and efficient Pd-catalyzed oxidative cyclization system is developed for the chemo- and regioselective synthesis of 3,4-dihydro-benzothiadiazine 1,1-dioxides, which are formed through aminosulfonylation of ortho-iodoanilines with SO2. DABSO is utilized as the source of SO2, and the organic compound O2 acts as an oxidant. This direct C-S, S-N, and C-N functionalization is highly efficient, and broad functional group tolerance is observed, resulting in moderate to excellent yields of 3,4-dihydro-benzothiadiazine 1,1-dioxides. Furthermore, this method is amenable to gram-scale synthesis.
Collapse
Affiliation(s)
- Zhenjie Qi
- Department of Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Simiaomiao Wen
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-Class Applied Discipline (Pharmacy), Changsha, 410219, China
| | - Hao Li
- Department of Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Dongfang Jiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-Class Applied Discipline (Pharmacy), Changsha, 410219, China
| |
Collapse
|
8
|
Wang X, Rissanen K, Bolm C. A One-Pot Domino Reaction Providing Fluorinated 5,6-Dihydro-1,2-thiazine 1-Oxides from Sulfoximines and 1-Trifluoromethylstyrenes. Org Lett 2023; 25:1569-1572. [PMID: 36852945 DOI: 10.1021/acs.orglett.3c00415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
N-Trifluoroacetylated (N-TFA) sulfoximines react with 1-trifluoromethylstyrenes in a one-pot domino reaction to give fluorinated 5,6-dihydro-1,2-thiazine 1-oxides in good to high yields. The process involves three sequential reaction steps that can be characterized as (1) nucleophilic allylic substitution (SN2'), (2) hydrolysis, and (3) intramolecular nucleophilic vinylic substitution (SNV). The products can further be modified by defluorination. The molecular structure of the resulting product was confirmed by X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Xianliang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, FI-40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
9
|
Chakraborty N, Rajbongshi KK, Dahiya A, Das B, Vaishnani A, Patel BK. NIS-initiated photo-induced oxidative decarboxylative sulfoximidation of cinnamic acids. Chem Commun (Camb) 2023; 59:2779-2782. [PMID: 36786510 DOI: 10.1039/d3cc00142c] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
N-Iodosuccinimide catalyzed, visible-light-induced oxidative decarboxylative cross-coupling between cinnamic acids and NH-sulfoximines is presented. This strategy results in the formation of α-keto-N-acyl sulfoximines via the construction of two new CO bonds and one C-N bond. The in situ-generated N-iodosulfoximine serves as the light-absorbing species in the absence of any external photosensitizer. The keto carbonyl and amidic carbonyl oxygen in the resulting product originate from dioxygen and water respectively.
Collapse
Affiliation(s)
- Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kamal K Rajbongshi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India. .,Department of Chemistry, Handique Girls' College, Guwahati, 781001, Assam, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Akshar Vaishnani
- Department of Chemistry, REVA University, Bangalore, 560064, Bengaluru, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
10
|
Wang B, Liang X, Zeng Q. Recent Advances in the Synthesis of Cyclic Sulfoximines via C-H Bond Activation. Molecules 2023; 28:molecules28031367. [PMID: 36771034 PMCID: PMC9921269 DOI: 10.3390/molecules28031367] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Sulfoximines, a ubiquitous class of structural motifs, are widely present in bioactive molecules and functional materials that have received considerable attention from modern organic chemistry, pharmaceutical industries, and materials science. Sulfoximines have proved to be an effective directing group for C-H functionalization which was widely investigated for the synthesis of cyclic sulfoximines. Within the last decade, great progress has been achieved in the synthesis of cyclic sulfoximines. Thus, this review highlights the recent advances in the synthesis of cyclic sulfoximines via the C-H activation strategy and is classified based on the substrate types.
Collapse
|
11
|
Sihag P, Jeganmohan M. Rhodium(III)-Catalyzed Redox-Neutral [4 + 1]-Annulation of Unactivated Alkenes with Sulfoxonium Ylides. J Org Chem 2022; 87:11073-11089. [PMID: 35946405 DOI: 10.1021/acs.joc.2c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology for redox-neutral [4 + 1] annulation of unactivated alkenes with sulfoxonium ylides leads to the synthesis of a diverse library of indanone compounds. The developed annulation reaction was found to be highly versatile due to its compatibility with various unactivated alkenes functionalized with various sensitive functional groups as well as substituted sulfoxonium ylides. Further, multiple transformations such as ring-expansion, reduction, aldol condensation, and Wittig reaction were carried out with indanones. Using this way, highly useful cyclic heterocycles such as indene, dihydroisocoumarin, and 1-indanilidene were prepared in a single step. A possible reaction mechanism was supported by deuterium labeling studies, competitive studies, and kinetic isotopic studies.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
12
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective Synthesis of Benzothiadiazine-1-oxides via C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202205341. [PMID: 35491238 DOI: 10.1002/anie.202205341] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/11/2022]
Abstract
Among sulfoximine derivatives containing a chiral sulfur center, benzothiadiazine-1-oxides are important for applications in medicinal chemistry. Here, we report that the combination of an achiral cobalt(III) catalyst and a pseudo-C2 -symmetric H8 -binaphthyl chiral carboxylic acid enables the asymmetric synthesis of benzothiadiazine-1-oxides from sulfoximines and dioxazolones via enantioselective C-H bond cleavage. With the optimized protocol, benzothiadiazine-1-oxides with several functional groups can be accessed with high enantioselectivity.
Collapse
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
13
|
Han X, Pi C, Hu D, Hu W, Wu Y, Cui X. Cobalt(II)-Catalyzed C-H and N-H Functionalization of 1-Arylpyrazolidinones with Dioxazolones as Bifunctional Synthons. Org Lett 2022; 24:4650-4655. [PMID: 35704765 DOI: 10.1021/acs.orglett.2c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dioxazolone has been attractive as an important synthon for a direct C-H amidation through a nitrene intermediate or Curtius rearrangement to form the isocyanate. However, the combination of two reaction models of dioxazolone has not been reported. Herein, a cobalt-catalyzed C-H and N-H functionalization of 1-arylpyrazolidinones with dioxazolones was developed. The dioxazolones acted as an amidated and carboxamidated reagent. Three C-N bonds were formed in a "one-pot" manner, which promoted the requirement of synthetic diversity.
Collapse
Affiliation(s)
- Xiliang Han
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Di Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Wei Hu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
14
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid‐Catalyzed Enantioselective Synthesis of Benzothiadiazine‐1‐oxides via C−H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| |
Collapse
|
15
|
More SG, Suryavanshi G. Lewis acid triggered N-alkylation of sulfoximines through nucleophilic ring-opening of donor-acceptor cyclopropanes: synthesis of γ-sulfoximino malonic diesters. Org Biomol Chem 2022; 20:2518-2529. [PMID: 35266938 DOI: 10.1039/d2ob00213b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium triflate (Sc(OTf)3) catalyzed, mild, and regioselective ring-opening reaction of donor-acceptor (D-A) cyclopropanes has been developed using sulfoximines for the synthesis of γ-sulfoximino malonic diesters. This protocol allows the synthesis of different N-alkyl sulfoximines in good to excellent yields (up to 94%) with broad functional group tolerance. In this process, N-H and C-C bonds are cleaved to form new C-N and C-H bonds. The feasibility of this method is supported by a gram-scale reaction and synthetic elaboration of the obtained product.
Collapse
Affiliation(s)
- Satish G More
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Gurunath Suryavanshi
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
16
|
Liu X, Li W, Jiang W, Lu H, Liu J, Lin Y, Cao H. Cu(II)-Catalyzed C-H Amidation/Cyclization of Azomethine Imines with Dioxazolones via Acyl Nitrenes: A Direct Access to Diverse 1,2,4-Triazole Derivatives. Org Lett 2022; 24:613-618. [PMID: 34978440 DOI: 10.1021/acs.orglett.1c04044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a Cu(II)-catalyzed C-H amidation/cyclization of azomethine imines with dioxazolones as acyl nitrene transfer reagents under additive- and ligand-free conditions. An array of 1,2,4-triazolo[1,5-a]pyridine derivatives were afforded in moderate to good yields with excellent functional group tolerance. In addition, scale-up reaction and photoluminescence properties were discussed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Wen Li
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Wenxuan Jiang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Hao Lu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Jiali Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Yijun Lin
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P.R. of China
| |
Collapse
|
17
|
Oh IS, Seo YJ, Hyun JY, Lim HJ, Lee DH, Park SJ. Acid-Catalyzed Hydrolysis and Intramolecular Cyclization of N-Cyano Sulfoximines for the Synthesis of Thiadiazine 1-Oxides. ACS OMEGA 2022; 7:2160-2169. [PMID: 35071904 PMCID: PMC8771986 DOI: 10.1021/acsomega.1c05570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/27/2021] [Indexed: 05/17/2023]
Abstract
Herein, we describe a novel approach for the practical synthesis of thiadiazine 1-oxides 10. The first example of an intramolecular cyclization with 2-N-cyano-sulfonimidoyl amides 9 to form the desired thiadiazine 1-oxides 10 was developed. One-pot acid-induced hydrolysis of the cyano group and the intramolecular cyclocondensation protocol readily provided various heterocyclic frameworks in good to moderate yields. Notably, the crystal structures of N-urea sulfoximine 11 and thiadiazine 1-oxide 10i have been determined using X-ray crystallography.
Collapse
Affiliation(s)
- In Seok Oh
- Department
of Drug Discovery, Korea Research Institute
of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic
of Korea
| | - Ye Ji Seo
- Department
of Drug Discovery, Korea Research Institute
of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal and Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department
of Drug Discovery, Korea Research Institute
of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal and Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hwan Jung Lim
- Department
of Drug Discovery, Korea Research Institute
of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal and Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Duck-Hyung Lee
- Department
of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic
of Korea
| | - Seong Jun Park
- Department
of Drug Discovery, Korea Research Institute
of Chemical Technology, Daejeon 34114, Republic of Korea
- Department
of Medicinal and Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
18
|
Andresini M, Tota A, Degennaro L, Bull JA, Luisi R. Synthesis and Transformations of NH-Sulfoximines. Chemistry 2021; 27:17293-17321. [PMID: 34519376 PMCID: PMC9291533 DOI: 10.1002/chem.202102619] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022]
Abstract
Recent years have seen a marked increase in the occurrence of sulfoximines in the chemical sciences, often presented as valuable motifs for medicinal chemistry. This has been prompted by both pioneering works taking sulfoximine containing compounds into clinical trials and the concurrent development of powerful synthetic methods. This review covers recent developments in the synthesis of sulfoximines concentrating on developments since 2015. This includes extensive developments in both S-N and S-C bond formations. Flow chemistry processes for sulfoximine synthesis are also covered. Finally, subsequent transformations of sulfoximines, particularly in N-functionalization are reviewed, including N-S, N-P, N-C bond forming processes and cyclization reactions.
Collapse
Affiliation(s)
- Michael Andresini
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - Arianna Tota
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - Leonardo Degennaro
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - James A. Bull
- Department of Chemistry Imperial College LondonMolecular Sciences Research Hub White City Campus, Wood LaneLondonW12 0BZUK
| | - Renzo Luisi
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| |
Collapse
|
19
|
Huang G, Shan Y, Yu JT, Pan C. Rhodium-catalyzed C-H activation/cyclization of aryl sulfoximines with iodonium ylides towards polycyclic 1,2-benzothiazines. Org Biomol Chem 2021; 19:10085-10089. [PMID: 34779813 DOI: 10.1039/d1ob02052h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of 1,2-benzothiazine derivatives through rhodium-catalyzed C-H activation/cyclization of S-aryl sulfoximines with iodonium ylides was developed for the first time. In this report, C-H and N-H bond functionalization was realized towards a series of tricyclic and tetracyclic sulfoximine derivatives with moderate to excellent yields under simple reaction conditions.
Collapse
Affiliation(s)
- Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Yujia Shan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China. .,School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
20
|
Ma D, Kong D, Wang C, Truong KN, Rissanen K, Bolm C. Three-Dimensional Heterocycles by 5-exo-dig Cyclizations of S-Methyl- N-ynonylsulfoximines. Org Lett 2021; 23:8287-8290. [PMID: 34636567 DOI: 10.1021/acs.orglett.1c03041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Upon treatment with Cs2CO3, S-methyl-N-ynonylsulfoximines undergo 5-exo-dig cyclizations to give three-dimensional heterocycles. The reactions proceed at ambient temperature with a wide range of substrates affording the corresponding products in good to excellent yields.
Collapse
Affiliation(s)
- Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Chenyang Wang
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Khai-Nghi Truong
- University of Jyvaskyla, Department of Chemistry, FI-40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, FI-40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
21
|
Li J, Li H, Fang D, Liu L, Han X, Sun J, Li C, Zhou Y, Ye D, Liu H. Sulfoximines Assisted Rh(III)-Catalyzed C-H Activation/Annulation Cascade to Synthesize Highly Fused Indeno-1,2-benzothiazines. J Org Chem 2021; 86:15217-15227. [PMID: 34613739 DOI: 10.1021/acs.joc.1c01820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A facile access to highly fused tetracyclic indeno-1,2-benzothiazines has been established via a Rh(III)-catalyzed C-H bond activation and intramolecular annulation cascade between sulfoximides and all-carbon diazo indandiones. This strategy is characterized by the fact that the diazo coupling partners do not require preactivation, along with its high efficiency, broad substrate generality, and facile transformation. Particularly, the highly conjugated tetracyclic products demonstrate good optical properties and can easily enter cells to emit bright fluorescence for live cell imaging.
Collapse
Affiliation(s)
- Jian Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hui Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Daqing Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lingjun Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
22
|
Affiliation(s)
- Hans‐Joachim Gais
- Institute of Organic Chemistry RWTH Aachen University Professor-Pirlet Strasse 1 52074 Aachen Germany
| |
Collapse
|
23
|
Hu XQ, Liu ZK, Hou YX, Xu JH, Gao Y. Merging C-H Activation and Strain-Release in Ruthenium-Catalyzed Isoindolinone Synthesis. Org Lett 2021; 23:6332-6336. [PMID: 34346680 DOI: 10.1021/acs.orglett.1c02131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The merger of strain-release of 1,2-oxazetidines with carboxylic acid directed C-H activation in catalytic synthesis of isoindolinones is reported for the first time. This reaction opens a new and sustainable avenue to prepare a range of structurally diverse isoindolinone skeletons from readily available benzoic acids. The success of late-stage functionalization of some bioactive acids, and concise synthesis of biologically important skeletons demonstrated its great synthetic potential in drug discovery. Mechanistic studies indicated a plausible C-H activation/β-carbon elimination/intramolecular cyclization cascade pathway.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ji-Hang Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
24
|
Song D, Huang C, Liang P, Zhu B, Liu X, Cao H. Lewis acid-catalyzed regioselective C–H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement. Org Chem Front 2021. [DOI: 10.1039/d1qo00224d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient, direct, and novel Lewis acid-catalyzed regioselective C–H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement under metal-free conditions has been documented.
Collapse
Affiliation(s)
- Dan Song
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Changfeng Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Peishi Liang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Baofu Zhu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center
- Guangdong Pharmaceutical University
- Zhongshan 528458
- China
| |
Collapse
|
25
|
Shu S, Huang Z, Chen Y, Yang S, Jiang Y, Zhang J, Zhao Y. Rh(III)-Catalyzed [4+2] Annulation of Indoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone Derivatives. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|