1
|
Mondal S, Das P, Mukherjee S. Difluoroenoxysilanes in Catalytic Asymmetric Allylic Alkylation. Org Lett 2024; 26:11073-11079. [PMID: 39630127 DOI: 10.1021/acs.orglett.4c04279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An allylic substitution with difluoroenoxysilanes as the nucleophile is accomplished for the enantioselective synthesis of α-allylic α,α-difluoroketones. With racemic branched allylic alcohols as the easily accessible allylic electrophile, this branched-selective and enantioconvergent allylic alkylation reaction is catalyzed by an Ir(I)/(P,olefin) complex and overcomes the low nucleophilicity of difluoroenoxysilanes to furnish β-chiral α,α-difluoroketones in moderate to good yields with high enantioselectivity (up to >99.9:0.1 er).
Collapse
Affiliation(s)
- Subhajit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Priyotosh Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Wang Q, Pan YL, Liang RX, Hu YY, Jia YX. Synthesis of 3-propargyl isoindolinones by Pd/Cu-catalyzed enantioselective Heck/Sonogashira reaction of enamides. Org Biomol Chem 2024. [PMID: 39688115 DOI: 10.1039/d4ob01881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, we report an enantioselective Pd/Cu-catalyzed sequential Heck/Sonogashira coupling reaction of electron-rich enamides with terminal alkynes as substrates. This transformation proceeds smoothly to afford 3-propargyl isoindolinone derivatives bearing quaternary stereogenic centers in moderate to good yields (43-77% yield) and good to excellent enantioselectivity (up to 93% ee). Functional groups such as halogen atoms (F, Cl, and Br), thienyl, and silyl moieties are tolerated well. Synthetic transformations of the 3-propargyl isoindolinone product show the utility value of the reaction.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Ya-Lin Pan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China.
| | - Yi-Xia Jia
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Zhao X, Wang C, Yin L, Liu W. Highly Enantioselective Decarboxylative Difluoromethylation. J Am Chem Soc 2024; 146:29297-29304. [PMID: 39404447 DOI: 10.1021/jacs.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Organofluorine molecules that contain difluoromethyl groups (CF2H) at stereogenic centers have gained importance in pharmaceuticals due to the unique ability of CF2H groups to act as lipophilic hydrogen bond donors. Despite their potential, the enantioselective installation of CF2H groups into readily available starting materials remains a challenging and underdeveloped area. In this study, we report a nickel-catalyzed decarboxylative difluoromethylation reaction that converts alkyl carboxylic acids into difluoromethylated products with exceptional enantioselectivity. This Ni-catalyzed protocol exhibits broad functional group tolerance and is applicable for synthesizing fluorinated bioisosteres of biologically relevant molecules.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
4
|
Alvarado M, Loo M, Adler H, Arnall C, Amsden K, Martinez G, Navarro R. Synthesis of 3,3-Disubstituted Allyl Isoindolinones via Pd-Catalyzed Decarboxylative Allylic Alkylation. Tetrahedron Lett 2024; 148:155242. [PMID: 39183729 PMCID: PMC11343487 DOI: 10.1016/j.tetlet.2024.155242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Herein, we report a mild palladium-catalyzed decarboxylative allylic alkylation of allyl ester-substituted isoindolinone substrates to afford a variety of 3,3-disubstituted isoindolinone derivatives. The decarboxylative coupling reaction tolerates a range of functional groups, including ketones and alkenyl halides, and does not require protection of the isoindolinone nitrogen. Additionally, the reaction was found to proceed in near-quantitative yield for most substrates evaluated. Based on the isolation of competing cyclopropane and protonation products, a reaction mechanism is proposed.
Collapse
Affiliation(s)
- Mario Alvarado
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Marisa Loo
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Hanna Adler
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Caroline Arnall
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Katharine Amsden
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Gisela Martinez
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Raul Navarro
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
5
|
Xie JQ, Wang BX, Liang RX, Jia YX. Copper-catalyzed asymmetric 1,2-arylboration of enamines: access to chiral borate-containing 3,3'-disubstituted isoindolinones. Org Biomol Chem 2024. [PMID: 39005048 DOI: 10.1039/d4ob00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
An enantioselective copper-catalyzed 1,2-arylboration reaction of enamines has been developed by employing (R)-xyl-BINAP as a chiral ligand. A number of chiral borate-containing 3,3'-disubstituted isoindolinones were obtained in moderate to good yields and good to excellent enantioselectivities from the reactions of N-(o-iodobenzoyl)enamines and bis(pinacolato)diboron (B2pin2) under mild reaction conditions. Synthetic transformations of the products were conducted to demonstrate the practicality of this reaction.
Collapse
Affiliation(s)
- Jia-Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Bing-Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
6
|
Sagar K, Srimannarayana M, Teegala R, Merja BC, Pradhan TR, Park JK. Difluoroenoxysilane: Expanding Allenamide Hydrodifluoroalkylation for Diverse Carbon Frameworks. Org Lett 2024; 26:5676-5681. [PMID: 38922286 DOI: 10.1021/acs.orglett.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study presents an effective route to access functionalizable fluorinated enamides characterized by their high regiospecificity around the allenamide. Synthetic applications of the resulting difluorocarbonyl-bearing enamide products were pursued through straightforward synthetic transformations to prepare unknown functionalized valuable halogenated O-heterocycles and C5 skeletons. Experimental mechanistic studies showed that hydrodifluoroalkylation occurs via a hidden Brønsted acid activation, thereby establishing a new electrophilic activation mode for allenamide through a conjugated iminium intermediate.
Collapse
Affiliation(s)
- Kadiyala Sagar
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Hyderabad 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Malempati Srimannarayana
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Hyderabad 502329, India
| | - Raju Teegala
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Hyderabad 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Bhailal C Merja
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Tapas R Pradhan
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Li L, Li J. Solvent- and Catalyst-Free Synthesis of gem-Difluorinated and Polyfluoroarylated Compounds with Nucleophilic or Electrophilic Fluorine-Containing Reaction Partners, Respectively. Molecules 2024; 29:697. [PMID: 38338440 PMCID: PMC10856203 DOI: 10.3390/molecules29030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
A novel, efficient and environmentally friendly solvent-free and catalyst-free approach for the synthesis of structurally diverse gem-difluorinated and polyfluoroarylated derivatives with readily available nucleophilic and electrophilic fluorine-containing reaction partners, difluoroenoxysilane and pentafluorobenzaldehyde, is described. This neat protocol is induced by the direct hydrogen-bond interactions between fluorinated and non-fluorinated reactants without the use of heavy metal catalysts or volatile organic solvents and with no need for column chromatographic separation for most cases.
Collapse
Affiliation(s)
- Lingheng Li
- Department of Photography, Tianjin University of Technology, Tianjin 300384, China
| | - Jinshan Li
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Wu H, Li Y, Sun M, Zhang J, Li J, Yang J. Highly Diastereoselective [3 + 2] Cycloaddition of Aziridines with Difluorinated Silyl Enol Ethers: Divergent Synthesis of 4,4-Difluoropyrrolidines and 4-Fluoropyrroles. Org Lett 2024; 26:751-756. [PMID: 38214536 DOI: 10.1021/acs.orglett.3c04251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A highly diastereoselective [3 + 2] cycloaddition of aziridines with difluorinated silyl enol ethers has been developed. This approach provides a facile methodology for highly functionalized gem-difluorinated pyrrolidines in good to excellent yields with good functional group tolerance. A one-pot, two-step approach for synthesis of structurally interesting fluorinated pyrroles has also been developed through a cycloaddition/aromatization/desulfonation sequence. Moreover, readily available substrates, mild reaction conditions, and easy scale-up synthesis show practical advantages.
Collapse
Affiliation(s)
- Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Yanan Li
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Jinshan Li
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, People's Republic of China
| |
Collapse
|
10
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (1-indolizinyl) (diaryl)-methanamines via chiral phosphoric acid catalysis. RSC Adv 2024; 14:1106-1113. [PMID: 38174273 PMCID: PMC10759308 DOI: 10.1039/d3ra07636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (1-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
11
|
Zhao T, Xu H, Tian Y, Tang X, Dang Y, Ge S, Ma J, Zhang F. Copper-Catalyzed Regio- and Enantioselective Hydroboration of Difluoroalkyl-Substituted Internal Alkenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304194. [PMID: 37880870 PMCID: PMC10724385 DOI: 10.1002/advs.202304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Catalytic asymmetric hydroboration of fluoroalkyl-substituted alkenes is a straightforward approach to access chiral small molecules possessing both fluorine and boron atoms. However, enantioselective hydroboration of fluoroalkyl-substituted alkenes without fluorine elimination has been a long-standing challenge in this field. Herein, a copper-catalyzed hydroboration of difluoroalkyl-substituted internal alkenes with high levels of regio- and enantioselectivities is reported. The native carbonyl directing group, copper hydride system, and bisphosphine ligand play crucial roles in suppressing the undesired fluoride elimination. This atom-economic protocol provides a practical synthetic platform to obtain a wide scope of enantioenriched secondary boronates bearing the difluoromethylene moieties under mild conditions. Synthetic applications including functionalization of biorelevant molecules, versatile functional group interconversions, and preparation of difluoroalkylated Terfenadine derivative are also demonstrated.
Collapse
Affiliation(s)
- Tao‐Qian Zhao
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Hui Xu
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yu‐Chen Tian
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Xiaodong Tang
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yanfeng Dang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Shaozhong Ge
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Jun‐An Ma
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Fa‐Guang Zhang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| |
Collapse
|
12
|
Tan K, He J, Mu Z, Ammar IM, Che C, Geng J, Xing Q. Visible-Light-Promoted C(sp 3)-C(sp 3) Cross-Coupling of Amino Acids and Aryl Trifluoromethyl Ketones Through Simultaneous Decarboxylation and Defluorination. Org Lett 2023. [PMID: 37991739 DOI: 10.1021/acs.orglett.3c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A photoredox-catalyzed approach for the difluoroalkylation of amino acids was achieved through simultaneous decarboxylation and defluorination processes. This innovative protocol employs commonly available amino acids and trifluoroacetophenones as the primary starting materials, eliminating the necessity for preactivation. This strategy has enabled the synthesis of several difluoroketone functionalized amines in moderate to impressive yields. These synthesized compounds are presented as foundational molecules for subsequent modification. The underlying mechanism for the transformation is anchored in a single electron transfer (SET) radical pathway.
Collapse
Affiliation(s)
- Kui Tan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaan He
- PolyAdvant, Shenzhen, 518000, China
| | | | - Ibrahim M Ammar
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055China
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| | - Qi Xing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, China
| |
Collapse
|
13
|
Briand M, Anselmi E, Dagousset G, Magnier E. The Revival of Enantioselective Perfluoroalkylation - Update of New Synthetic Approaches from 2015-2022. CHEM REC 2023; 23:e202300114. [PMID: 37219007 DOI: 10.1002/tcr.202300114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Over the last years, methods devoted to the synthesis of asymmetric molecules bearing a perfluoroalkylated chain have been limited in number. Among them, only a few can be used on a large variety of scaffolds. This microreview aims at summarizing these recent advances in enantioselective perfluoroalkylation (-CF3 , -CF2 H, -Cn F2n+1 ) and highlights the need for new enantioselective methods to easily synthesize chiral fluorinated molecules which would be useful for the pharmaceutical and agrochemical industries. Some perspectives are also mentioned.
Collapse
Affiliation(s)
- Marina Briand
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Elsa Anselmi
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
- Université de Tours, Faculté des Sciences et Techniques, Parc Grandmont, Avenue Monge, 37200, Tours, France
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| |
Collapse
|
14
|
Wang XY, Yang M, Zhou Y, Zhou J, Hao YJ. A highly efficient metal-free selective 1,4-addition of difluoroenoxysilanes to chromones. Org Biomol Chem 2023; 21:1033-1037. [PMID: 36625240 DOI: 10.1039/d2ob02152h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly efficient metal-free selective 1,4-addition reaction of difluoroenoxysilanes to chromones was developed using the low-cost and readily available HOTf as the catalyst, which is a facile and straightforward method to access valuable C2-difluoroalkylated chroman-4-one derivatives. Interestingly, the products could be readily converted to the difluorinated bioisostere of the natural product (S)-2,6-dimethylchroman-4-one and a difluorinated benzo-seven-membered heterocycle via the Schmidt rearrangement reaction. In addition, the in vitro anti-proliferative activities of these synthesized derivatives against human colon carcinoma cells (HCT116) revealed that compound 3g exhibited potent inhibitory effect on HCT116 cancer cells with an IC50 value of 6.37 μM, representing a novel lead compound for further structural optimization and biological evaluation.
Collapse
Affiliation(s)
- Xi-Yu Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Min Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Yong-Jia Hao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
15
|
Sanz-Marco A, Esperilla D, Montesinos-Magraner M, Vila C, Muñoz MC, Pedro JR, Blay G. A Cu-BOX catalysed enantioselective Mukaiyama-aldol reaction with difluorinated silyl enol ethers and acylpyridine N-oxides. Org Biomol Chem 2023; 21:345-350. [PMID: 36484719 DOI: 10.1039/d2ob01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Cu(II)/BOX complex catalyses the enantioselective addition of difluorinated silyl enol ethers to acylpyridine N-oxides. The reaction provides difluorinated chiral tertiary alcohols of great interest in medicinal chemistry. These compounds are obtained in moderate to excellent yields and with high enantioselectivities. The stereochemical outcome of the reaction has been explained by DFT calculations.
Collapse
Affiliation(s)
- Amparo Sanz-Marco
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Daniel Esperilla
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Marc Montesinos-Magraner
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Carlos Vila
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - M Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, C/Cami de Vera s/n, 46022-València, Spain
| | - José R Pedro
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| | - Gonzalo Blay
- Departament de Química Orgànica-Facultat de Química, Universitat de València, C/Dr. Moliner 50, 46100-Burjassot, València, Spain.
| |
Collapse
|
16
|
Bhosale VA, Císařová I, Kamlar M, Veselý J. Catalytic asymmetric addition to cyclic N-acyl-iminium: access to sulfone-bearing contiguous quaternary stereocenters. Chem Commun (Camb) 2022; 58:9942-9945. [PMID: 35983733 DOI: 10.1039/d2cc02667h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the first chiral phosphoric acid (CPA)-catalyzed asymmetric addition of α-fluoro(phenylsulfonyl)methane (FSM) derivatives to in situ generated cyclic N-acyliminium. This process enables metal-free expeditious access to sulfone and fluorine incorporating contiguous all substituted quaternary stereocenters ingrained in biorelevant isoindolinones in excellent stereoselectivities (up to 99% ee and up to 50 : 1 dr).
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Martin Kamlar
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| |
Collapse
|
17
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
18
|
Liang Y, Zhou N, Ma G, Wen L, Wu X, Feng P. Tunable alkoxy-nucleophilic addition under photochemical condition: Dioxidation of gem‑difluoroalkenes with O2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Yu ZL, Chen JW, Chen YL, Zheng RJ, Ma M, Chen JP, Shen ZL, Chu XQ. DMSO-Promoted Difluoroalkylation of Organophosphonium Salts with Difluoroenol Silyl Ethers. Org Lett 2022; 24:5557-5561. [PMID: 35867631 DOI: 10.1021/acs.orglett.2c02088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient method for the synthesis of β,β-di(hetero)aryl-α,α-difluorinated ketones using readily available organophosphonium salts and difluoroenol silyl ethers has been developed. This mild reaction features a good functional group tolerance, a scaled-up synthesis, and synthetic simplicity. By taking advantage of DMSO as a less-toxic promoter and solvent for the difluoroalkylation and C-P bond functionalization, the use of transition-metal catalysts and sensitive additives could be avoided.
Collapse
Affiliation(s)
- Zi-Lun Yu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jia-Wei Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yu-Lan Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Ren-Jun Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian-Ping Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| |
Collapse
|
20
|
Saidah M, Mardjan MID, Masson G, Parrain JL, Commeiras L. Enantioselective Construction of Tetrasubstituted Carbon Stereocenters via Chiral Phosphoric Acid-Catalyzed Friedel-Craft Alkylation of Indoles with 5-Substituted Hydroxybutyrolactams. Org Lett 2022; 24:5298-5303. [PMID: 35834747 DOI: 10.1021/acs.orglett.2c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first intermolecular organocatalytic enantioselective addition of indoles to prochiral 5-membered cyclic N-acyliminium ions, generated from 5-hydroxy-α,β-unsaturated pyrrolidin-2-ones, is reported hereinafter. The reaction proceeds smoothly with a range of 5-hydroxy-5-substituted-α,β-unsaturated pyrrolidin-2-ones and indoles using BINOL-derived phosphoric acid catalyst to afford α,β-unsaturated lactams embedding a tetrasubstituted stereogenic center in high yields and enantioselectivities.
Collapse
Affiliation(s)
- Milane Saidah
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean-Luc Parrain
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Laurent Commeiras
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
21
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines via chiral phosphoric acid catalysis. RSC Adv 2022; 12:20499-20506. [PMID: 35919132 PMCID: PMC9284663 DOI: 10.1039/d2ra03750e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
22
|
Uno H, Kawai K, Araki T, Shiro M, Shibata N. Enantio-, Diastereo- and Regioselective Synthesis of Chiral Cyclic and Acyclic gem-Difluoromethylenes by Palladium-Catalyzed [4+2] Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202117635. [PMID: 35344247 DOI: 10.1002/anie.202117635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/25/2022]
Abstract
gem-Difluoromethylene moieties are attractive in medicinal chemistry due to their ability to mimic other more ubiquitous functional groups. Thus, effective asymmetric methods for their construction are highly desirable, especially for the industrial production of chiral drugs. Using a Pd-catalyzed asymmetric [4+2] cycloaddition between substituted-2-alkylidenetrimethylene carbonates and gem-difluoroalkyl ketones, we were able to easily access chiral 1,3-dioxanes that contain a tetrasubstituted difluoroalkyl stereogenic center in cyclic and acyclic skeletons. A novel phosphoramidite ligand, which contains a bulky 1,1-dinaphthylmethanamino moiety, was developed to provide the products in high yield with excellent enantio-, diastereo-, and regioselectivity. Strikingly, the gem-difluoro substitution pattern promotes the reaction, and pentafluoroethylketone, an α,α-difluorinated β-ketoester, and a β-ketosulfone are suitable substrates for this method.
Collapse
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Koki Kawai
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Taichi Araki
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
23
|
Liu PY, Zhao SC, Zhang MY, Song L, Wang C, Yu F, Meng Q, Zhang Z, He YP. Pd-Catalyzed γ-Acetoxylation of Alkylamides: Structural Influence of Directing Groups. J Org Chem 2022; 87:6378-6386. [PMID: 35422116 DOI: 10.1021/acs.joc.2c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng-Yu Liu
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Load West 1, Fushun 113001, China
| | - Shi-Chen Zhao
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Load West 1, Fushun 113001, China
| | - Ming-Yuan Zhang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Load West 1, Fushun 113001, China
| | - Lijuan Song
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Load West 1, Fushun 113001, China
| | - Caiping Wang
- Beijing Winsunny Pharmaceutical CO., LTD, Beijing 101113, China
| | - Fang Yu
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Qingtao Meng
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yu-Peng He
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Jiangbei District, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Load West 1, Fushun 113001, China
| |
Collapse
|
24
|
Wu H, Hong P, Xi W, Li J. Divergent Synthesis of gem-Difluorinated Oxa-Spirocyclohexadienones by One-Pot Sequential Reactions of p-Hydroxybenzyl Alcohols with Difluoroenoxysilanes. Org Lett 2022; 24:2488-2493. [PMID: 35344353 DOI: 10.1021/acs.orglett.2c00550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new efficient formal [2 + 3] cyclization of p-hydroxybenzyl alcohols with difluoroenoxysilanes has been established. This convenient one-pot sequential procedure enables the divergent construction of highly functionalized gem-difluorinated oxa-spirocyclohexadienones under mild conditions. As opposed to the common C1 synthons in previous studies, difluoroenoxysilanes acted as new 3-atom (CCO) synthons for the first time here. The AcOH and H2O generated in the reaction are critical for the reactions to proceed smoothly.
Collapse
Affiliation(s)
- Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Peng Hong
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Wenxue Xi
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
25
|
Uno H, Kawai K, Araki T, Shiro M, Shibata N. Enantio‐, Diastereo‐ and Regioselective Synthesis of Chiral Cyclic and Acyclic gem‐Difluoromethylenes by Palladium‐Catalyzed [4+2] Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroto Uno
- Nagoya Kogyo Daigaku Nano Medicine Kagaku Senko Department of Nanophamaceutical Sciences JAPAN
| | - Koki Kawai
- Nagoya Kogyo Daigaku Department of Chemistry JAPAN
| | - Taichi Araki
- Nagoya Kogyo Daigaku Department of Chemistry JAPAN
| | - Motoo Shiro
- Rigaku Kenkyujo Kakushin chino togo kenkyu senta Non JAPAN
| | - Norio Shibata
- Nagoya Kogyo Daigaku Nano Medicine Kagaku Senko Department of Nanopharmaceutical Science and Department of Frontier Materials Gokiso, Showa-kuNagare College 466-8555 Nagoya JAPAN
| |
Collapse
|
26
|
Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen WW, Ding K, Zhao B. A Powerful Chiral Super Brønsted C-H Acid for Asymmetric Catalysis. J Am Chem Soc 2022; 144:2853-2860. [PMID: 35143204 DOI: 10.1021/jacs.1c12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of chiral super Brønsted C-H acids, BINOL-derived phosphoryl bis((trifluoromethyl)sulfonyl) methanes (BPTMs), were developed. As compared to widely utilized BINOL-derived chiral phosphoric acids (BPAs) and N-triflyl phosphoramides (NTPAs), BPTMs displayed much higher Brønsted acidity, resulting in dramatically improved activity and excellent enantioselectivity as demonstrated in catalytic asymmetric Mukaiyama-Mannich reaction, allylic amination, three-component coupling of allyltrimethylsilane with 9-fluorenylmethyl carbamate and aldehydes, and protonation of silyl enol ether. These new strong Brønsted C-H acids have provided a platform for expanding the chemistry of asymmetric Brønsted acid catalysis.
Collapse
Affiliation(s)
- Bingfei Peng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yating Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ronghao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinlong Zeng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
27
|
Yang J, Liu S, Hong P, Li J, Wang Z, Ren J. Synthesis of 2,2-Difluoro-3-hydroxy-1,4-diketones via an HFIP-Catalyzed Mukaiyama Aldol Reaction of Glyoxal Monohydrates with Difluoroenoxysilanes. J Org Chem 2022; 87:1144-1153. [PMID: 34994195 DOI: 10.1021/acs.joc.1c02504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel efficient HFIP-catalyzed synthesis of structurally diverse 2,2-difluoro-3-hydroxy-1,4-diketone derivatives from readily available glyoxal monohydrates and difluoroenoxysilanes is described. This convenient protocol is induced by the distinctive fluorine effect of the reactants and the fluoroalcohol catalyst, which represents the first application of fluoroalcohol catalysis in a Mukaiyama aldol reaction.
Collapse
Affiliation(s)
- Jianguo Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China.,Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Saimei Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Peng Hong
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
28
|
Sadhu MM, Ray SK, Unhale RA, Singh VK. Brønsted acid-catalyzed enantioselective addition of 1,3-diones to in situ generated N-acyl ketimines. Org Biomol Chem 2022; 20:410-414. [PMID: 34904614 DOI: 10.1039/d1ob02162a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Brønsted acid-catalyzed asymmetric Mannich-type addition of 1,3-diones to cyclic N-acyl ketimines is reported for the synthesis of enantioenriched isoindolinones. Various dicarbonyl-substituted isoindolinones bearing a quaternary carbon stereocenter were synthesized with excellent yields (up to 98%) and moderate to high enantioselectivities (up to 95% ee), and most of them possess a fluorine atom at the reactive center. Furthermore, the synthetic utility of the protocol has been demonstrated by the debenzoylation of the product.
Collapse
Affiliation(s)
- Milon M Sadhu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP-462 066, India
| | - Sumit K Ray
- Department of Chemistry, Kharagpur College, Paschim Medinipur, WB-721 305, India
| | - Rajshekhar A Unhale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP-462 066, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, MP-462 066, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208 016, India.
| |
Collapse
|
29
|
Gui J, Sun M, Wu H, Li J, Yang J, Wang Z. Direct benzylic C–H difluoroalkylation with difluoroenoxysilanes by transition metal-free photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light promoted direct benzylic C–H difluoroalkylation with difluoroenoxysilanes catalyzed by Na2-eosin Y via a HAT-ORPC pathway has been developed, providing an efficient and atom-economic method for production of α-benzyl-α,α-difluoroketones.
Collapse
Affiliation(s)
- Jing Gui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jianguo Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zhiming Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
30
|
Pan YL, Shao YB, Liu Z, Zheng HL, Cai L, Zhang HC, Li X. Asymmetric difluorocarbonylation reactions of non-active imines catalyzed by Bi(OAc) 3/chiral phosphoric acid. Org Chem Front 2022. [DOI: 10.1039/d2qo00775d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Difluorinated carbonyl has been identified as the basic skeleton of multitudinous biologically active molecules.
Collapse
Affiliation(s)
- Yu-Liang Pan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying-Bo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han-Liang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liu Cai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hai-Chang Zhang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
31
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
32
|
Mengmeng G, Zilun Y, Yulan C, Danhua G, Mengtao M, Zhiliang S, Xueqiang C. Difluorinated Silyl Enol Ethers as Fluorine-Containing Building Blocks for the Synthesis of Organofluorine Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Beriša A, Glavač D, Zheng C, You SL, Gredičak M. Enantioselective construction of a congested quaternary stereogenic center in isoindolinones bearing three aryl groups via an organocatalytic formal Betti reaction. Org Chem Front 2022. [DOI: 10.1039/d1qo01684a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient enantioselective formal Betti reaction between phenols and diaryl ketimines generated in situ from isoindolinone alcohols is described.
Collapse
Affiliation(s)
- Arben Beriša
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Danijel Glavač
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Matija Gredičak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Li Y, Gao N, Cao G, Teng D. The Co( ii)/spiroBox-catalyzed enantioselective Mukaiyama-Mannich reaction for the synthesis of quaternary α-amino acid derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj00623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co(ii)/spiroBox-catalyzed Mukaiyama-Mannich reactions of enol silyl ethers with cyclic N-sulfonyl ketimino esters were examined and showed excellent yields and enantioselectivity values.
Collapse
Affiliation(s)
- Yanshun Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nanxing Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guorui Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dawei Teng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
35
|
Li J, Liu S, Zhong R, Yang Y, Xu J, Yang J, Ding H, Wang Z. Cascade Cyclization of Azadienes with Difluoroenoxysilanes: A One-Pot Formal [4 + 2] Approach to Fluorinated Polyfused Heterocycles. Org Lett 2021; 23:9526-9532. [PMID: 34860022 DOI: 10.1021/acs.orglett.1c03745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A TfOH-promoted synthesis of fluorinated polyfused heterocycles via the cascade cyclization of azadienes and difluoroenoxysilanes has been developed, leading to the facile construction of fluorinated benzofuro[3,2-b]pyridines, 5H-indeno[1,2-b]pyridines, and 5,6-dihydrobenzo[h]quinolines. This one-pot formal [4 + 2] approach involves 1,4-difluoroalkylation, desulfonylation, cyclization, and dehydrated and dehydrofluorinated aromatization and represents the first application of difluoroenoxysilane in cascade transformations. Furthermore, this methodology is highlighted by the synthesis of three fluoro analogues of bioactive molecules with potent topoisomerase inhibitory activities.
Collapse
Affiliation(s)
- Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Saimei Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Rong Zhong
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yaqi Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jinjing Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
36
|
Matišić M, Gredičak M. Enantioselective construction of a tetrasubstituted stereocenter in isoindolinones via an organocatalyzed reaction between ketones and 3-hydroxyisoindolinones. Chem Commun (Camb) 2021; 57:13546-13549. [PMID: 34842247 DOI: 10.1039/d1cc05761h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient enantioselective reaction between ketones and 3-hydroxyisoindolinones is described. In a reaction catalyzed by a chiral phosphoric acid, a broad range of ketones and in situ generated ketimines afforded isoindolinone derivatives comprising a tetrasubstituted stereocenter in high yields and enantioselectivities. The developed methodology is also suitable for the construction of compounds with vicinal stereogenic centers.
Collapse
Affiliation(s)
- Mateja Matišić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10 000 Zagreb, Croatia.
| | - Matija Gredičak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
37
|
HFIP-catalyzed highly diastereoselective formal [4 + 2] cyclization to synthesize difluorinated multisubstituted chromans using difluoroenoxysilanes as C2 synthons. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Li J, Xi W, Liu S, Ruan C, Zheng X, Yang J, Wang L, Wang Z. HFIP-Catalyzed Difluoroalkylation of Propargylic Alcohols to Access Tetrasubstituted Difluoroalkyl Allenes. Org Lett 2021; 23:7264-7269. [PMID: 34449234 DOI: 10.1021/acs.orglett.1c02659] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A hexafluoroisopropanol (HFIP)-catalyzed difluoroalkylation of propargylic alcohols with difluoroenoxysilanes to access structurally diverse tetrasubstituted difluoroalkyl allenes has been developed. This convenient procedure enables the rapid construction of highly functionalized multisubstituted fluorinated allenes in a mild and straightforward way. Furthermore, the synthetic potential of this methodology has been demonstrated by the facile synthesis of various structurally interesting fluorine-containing molecules such as gem-difluorosubstituted dihydropyran, tetrasubstituted CF2H-allene, and multisubstituted fluorinated cyclopentanone derivatives.
Collapse
Affiliation(s)
- Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Wenxue Xi
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Saimei Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Chenxi Ruan
- School of Resources and Chemical Engineering, Sanming University, Sanming 365004, P. R. China
| | - Xiaochun Zheng
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
39
|
Li J, Liu S, Zhong R, Yang Y, He Y, Yang J, Ma Y, Wang Z. Reversal of Regioselectivity in Nucleophilic Difluoroalkylation of α,β-Enones Employing In Situ-Formed Sterically Encumbered Silylium Catalyst. Org Lett 2021; 23:5859-5864. [PMID: 34282922 DOI: 10.1021/acs.orglett.1c01993] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient approach for the reversal of regioselectivity in the nucleophilic introduction of difluorinated carbanion into α,β-enones has been developed via a silylium catalysis. The strong electron-withdrawing properties and bulky substituents of in situ-generated silyl triflic imide catalyst is the key for the 1,4-addition reaction to proceed smoothly. The synthetic utility is highlighted by the further use of this method for the synthesis of 2,4,6-triarylsubstituted 3-fluoropyridines in a one-pot manner.
Collapse
Affiliation(s)
- Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Saimei Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Rong Zhong
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yaqi Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yuru He
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
40
|
Chen L, Zou Y. Recent Advances in the Direct Functionalization of Isoindolinones for the Synthesis of 3,3‐Disubstituted Isoindolinones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Yun‐Xiang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| |
Collapse
|
41
|
He JX, Zhang ZH, Mu BS, Cui XY, Zhou J, Yu JS. Catalyst-Free and Solvent-Controlled Divergent Synthesis of Difluoromethylene-Containing S-Heterocycles. J Org Chem 2021; 86:9206-9217. [DOI: 10.1021/acs.joc.1c00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun-Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Zhi-Hao Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Yuan Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
42
|
Topolovčan N, Gredičak M. Synthesis and stereoselective catalytic transformations of 3-hydroxyisoindolinones. Org Biomol Chem 2021; 19:4637-4651. [PMID: 33978006 DOI: 10.1039/d1ob00164g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the synthesis of 3-hydroxyisoindolinones, and their application as substrates in stereoselective catalytic transformations reported from 2010 to date. These compounds have attracted much attention among synthetic chemists, as they are integral structural parts of a number of natural products and biologically active compounds. The first part of this review covers methods based on electrochemical, photochemical, and thermal reactions for the synthesis of 3-hydroxyisoindolinones. The second part focuses on their employment as substrates in transition metal-catalyzed and organocatalyzed stereoselective transformations for the preparation of chiral 3-substituted isoindolinone derivatives.
Collapse
Affiliation(s)
- Nikola Topolovčan
- Laboratory for Biomimetic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Matija Gredičak
- Laboratory for Biomimetic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
43
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
44
|
Shi Y, Pan BW, He JX, Zhou Y, Zhou J, Yu JS. Construction of gem-Difluoroenol Esters through Catalytic O-Selective Addition of Difluoroenoxysilanes to Ketenes. J Org Chem 2021; 86:7797-7805. [DOI: 10.1021/acs.joc.1c00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun-Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
45
|
Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Enantioselective Bifunctional Ammonium Salt-Catalyzed Syntheses of 3-CF 3S-, 3-RS-, and 3-F-Substituted Isoindolinones. Adv Synth Catal 2021; 363:1955-1962. [PMID: 33897314 PMCID: PMC8050839 DOI: 10.1002/adsc.202100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Indexed: 01/12/2023]
Abstract
We herein report the ammonium salt-catalyzed synthesis of chiral 3,3-disubstituted isoindolinones bearing a heteroatom functionality in the 3-position. A broad variety of differently substituted CF3S- and RS-derivatives were obtained with often high enantioselectivities when using Maruoka's bifunctional chiral ammonium salt catalyst. In addition, a first proof-of-concept for the racemic synthesis of the analogous F-containing products was obtained as well, giving access to one of the rare examples of a fairly stable α-F-α-amino acid derivative.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Jan Otevrel
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
- Department of Chemical DrugsFaculty of PharmacyMasaryk UniversityPalackeho 1946/1612 00BrnoCzechia
| | - Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Antonio Macchia
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Antonio Massa
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Kirill Faust
- Institute of CatalysisJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Albrecht Berkessel
- Department of ChemistryCologne UniversityGreinstrasse 450939CologneGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
46
|
Affiliation(s)
- Manfred Braun
- Institute of Organic and Macromolecular Chemistry Heinrich-Heine-University Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
47
|
Hernandez JJ, Frontier AJ. Synthesis of Spirocyclic Isoindolones Using an Alkynyl aza-Prins/Oxidative halo-Nazarov Cyclization Sequence. Org Lett 2021; 23:1782-1786. [PMID: 33591209 DOI: 10.1021/acs.orglett.1c00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this report, we describe an alkynyl halo-aza-Prins cyclization of 3-hydroxyisoindolones to prepare aza-Prins products. These Prins adducts undergo oxidation at the 3-isoindolone position after activation of the amide by triflic anhydride and 2-chloropyridine to form a pentadienyl cation capable of undergoing a halo-Nazarov cyclization. Using this methodology, angular-fused N-heterocyclic small molecules with two new rings, two new carbon-carbon bonds, a vinyl halide, and an aza-tertiary stereocenter can be obtained in good yields.
Collapse
Affiliation(s)
- Jackson J Hernandez
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14611, United States
| | - Alison J Frontier
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14611, United States
| |
Collapse
|
48
|
Huang X, Zhao W, Liang Y, Wang M, Zhan Y, Zhang Y, Kong L, Wang ZX, Peng B. α-C–H difluoroalkylation of alkyl sulfoxides via intermolecular Pummerer reaction. Org Chem Front 2021. [DOI: 10.1039/d0qo01513j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and practical intermolecular Pummerer reaction using difluoroenol silyl ethers as nucleophiles is described. The protocol allows for highly efficient α-difluoroalkylation of a wide spectrum of alkyl sulfoxides.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Weizhao Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yuchen Liang
- School of Chemical Sciences
- University of the Chinese Academy of Sciences
- Beijing 100049
- China
| | - Minghui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yaling Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yage Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Zhi-Xiang Wang
- School of Chemical Sciences
- University of the Chinese Academy of Sciences
- Beijing 100049
- China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
49
|
Gao F, Li B, Wang Y, Chen Q, Li Y, Wang K, Yan W. Stereoselective synthetic strategies of stereogenic carbon centers featuring a difluoromethyl group. Org Chem Front 2021. [DOI: 10.1039/d1qo00032b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scope of this review is to summarize routine asymmetric synthetic methods which enable the effective and selective introduction of difluoromethyl groups into the desired compounds, providing a general introduction to this important research area.
Collapse
Affiliation(s)
- Fengyun Gao
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Boyu Li
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Yalan Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Qushuo Chen
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Yongzhen Li
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Kairong Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| | - Wenjin Yan
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Sciences
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|