1
|
Lu Y, Cao T, Li K, Lin YW, Zhu L, Huang J. Total Synthesis of Brevitaxin. Org Lett 2024; 26:5237-5242. [PMID: 38856036 DOI: 10.1021/acs.orglett.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Brevitaxin was prepared in nine steps from commercially available carnosic acid. The construction of the 1,4-benzodioxin moiety involved an unique stepwise ortho-quinone-engaged [4+2] cycloaddition. Two strategic stages were employed to prepare the highly unsaturated cycloaddition precursor 3: (1) synthesizing the diene moiety (C1-C2 and C10-C20 double bonds) by regioselective ortho-quinone tautomerization, and (2) installing four sp2-hybridized carbon atoms (C3, C5, C6 and C7) in one step using a SeO2-promoted chemo- and regioselective oxidation reaction.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tingting Cao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Kang Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Lei Zhu
- College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Jun Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Liu M, Tang Q, Wang Q, Xie W, Fan J, Tang S, Liu W, Zhou Y, Deng X. Rapid access to icetexane diterpenes: Their protective effects against lipopolysaccharides-induced acute lung injury via PI3K/AKT/NF-κB axis in macrophages. Eur J Med Chem 2023; 260:115769. [PMID: 37683363 DOI: 10.1016/j.ejmech.2023.115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease with limited therapeutic options available in clinic. Development of novel strategies and drugs for anti-ALI therapy are urgently needed. In this study, a facile synthesis of 21 icetexane diterpenes and derivatives with widely-varied oxidation states, particularly the taxamairins that are otherwise challenging to access, were developed from the readily available carnosic acid. Further explorations of their biological implications led to the identification of taxamairin B (6) as a potent anti-inflammatory agent by decreasing the gene expressions of proinflammatory cytokines (TNF-α, IL-1β and IL-6), as well as mitigating NO and ROS production, within LPS-induced RAW264.7 cells. Taxamairin B (6, 25 mg/kg) also exerted significant protective effects against in LPS-induced ALI in mice. Mechanistic insights drawn from the transcriptomic analysis revealed that taxamairin B (6) down-regulated the PI3K-AKT pathway, along with the suppression of the nuclear translocation of NF-κB. This study not only paves a new pathway to taxamairins, but also provides novel drug leads for the development of anti-inflammatory agents with unique mode of actions.
Collapse
Affiliation(s)
- Moude Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qin Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qing Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weixi Xie
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Naeini AA, Ziegelmeier AA, Chain WJ. Recent Developments with Icetexane Natural Products. Chem Biodivers 2022; 19:e202200793. [PMID: 36215180 PMCID: PMC11067433 DOI: 10.1002/cbdv.202200793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Icetexane diterpenoids are a diverse family of natural products sourced from several species of terrestrial plants. Icetexanes exhibit a broad array of biological activities and together with their complex 6-7-6 tricyclic scaffolds, they have piqued the interest of synthetic organic chemists, natural products chemists, and biological investigators over the past four decades and were reviewed 13 years ago. This review summarizes icetexane natural products isolated since 2009, provides an overview of new synthetic approaches to the icetexane problem, and proposes an additional classification of icetexanes based on novel structures that are unlike previously isolated materials.
Collapse
Affiliation(s)
- Ali Amiri Naeini
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexandre A Ziegelmeier
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
4
|
Kang J, Quynh Le T, Oh CH. Recent advances in abietane/icetexane synthesis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Abietane derived diterpenoids as Cav3.1 antagonists from Salvia digitaloides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Kang J, Lee JH, Lee J, Oh CH. Intramolecular Cyclization of 2‐alkynylphenylcarbonyls with a pendant double bond under Cu catalysis: A general approach to Norabietane core structure. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juyeon Kang
- Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Ju Hui Lee
- Hanyang University Chemistry KOREA, REPUBLIC OF
| | - Junseong Lee
- Chonnam National University Chemistry KOREA, REPUBLIC OF
| | - Chang Ho Oh
- Hanyang University Department of Chemistry Sungdong-Gu 133-791 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
7
|
Chen J, Hu R, Bao Q, Shang D, Yu L, Chan PWH, Rao W. Ligand-controlled chemoselectivity in gold-catalyzed cascade cyclization of 1,4-diene-tethered 2-alkynylbenzaldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01346k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A synthetic method that relies on the gold(i)-catalyzed cascade annulation of skipped 1,4-diene-tethered 2-alkynylbenzaldehydes for the chemo- and stereoselective assembly polycyclic bridged-pyrrolidines and -azepines is described.
Collapse
Affiliation(s)
- Jichao Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Hu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qing Bao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Shang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Hu R, Chen J, Wang Z, Shang D, Yu L, Chan PWH, Rao W. THF-Enabled PtBr 2-Catalyzed Desymmetric Hydrogenative [3 + 2] Cycloaddition of 2-Alkynylbenzaldehyde-Tethered Cyclohexadienones. Org Chem Front 2022. [DOI: 10.1039/d2qo00593j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A THF-enabled PtBr2-catalyzed desymmetric hydrogenative [3 + 2] cycloaddition of 2-alkynylbenzaldehyde-tethered cyclohexadienones has been developed. The protocol provides a highly functionalized 6-7-6 polycyclic skeleton with four contiguous stereocenters in good...
Collapse
|
9
|
Xu JB, Xie XY, Zhou QQ, Zhu JY. Abieshanesides A and B, two unique ent-18,19-dinoricetexane diterpenoid glycosides from Abies beshanzuensis M.H. Wu. Fitoterapia 2021; 156:105096. [PMID: 34883224 DOI: 10.1016/j.fitote.2021.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
Two unprecedented ent-18,19-dinoricetexane diterpenoid glycosides, named abieshanesides A (1) and B (2), together with seven known compounds, have been isolated from the dead trunks and branches of Abies beshanzuensis M.H. Wu. To our knowledge, abieshanesides A and B represent the first ent-18,19-dinoricetexane diterpenoid glycosides found in natural sources. Their structures and absolute configurations were elucidated by using a combination of spectroscopic techniques and comparison of experimental and calculated electronic circular dichroism (ECD) data. The MTT experiments showed that (E)-resveratrol (7) could inhibit viability of MH7A cells with the IC50 value of 12.5 μM. Compound 7 was able to block MH7A cell proliferation and was associated with G0/G1-phase cell cycle arrest. Flow cytometric analysis showed that the treatment by 7 significantly induced the proliferation of MH7A cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Jin-Biao Xu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Xiao-Yan Xie
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing-Qing Zhou
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Yong Zhu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|