1
|
Qian CW, Li X, Gu MQ. Visible-Light-Induced Multi-Component Nitrooxylation Reactions of α-Diazoesters, Cyclic Ethers, and Tert-Butyl Nitrite Leading to Organic Nitrate Esters. Chemistry 2024; 30:e202402304. [PMID: 39044322 DOI: 10.1002/chem.202402304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
A simple and efficient strategy has been developed for the synthesis of organic nitrate esters via visible-light-induced multi-component nitrooxylation reactions of α-diazoesters, cyclic ethers, and tert-butyl nitrite under open air atmosphere. This transformation could be conducted under mild and metal-free conditions to provide a number of organic nitrate esters in moderate to good yields using air as the green oxidant.
Collapse
Affiliation(s)
- Cun-Wei Qian
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Xian Li
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Meng-Qing Gu
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| |
Collapse
|
2
|
Fernandes AJ, Valsamidou V, Katayev D. Overcoming Challenges in O-Nitration: Selective Alcohol Nitration Deploying N,6-Dinitrosaccharin and Lewis Acid Catalysis. Angew Chem Int Ed Engl 2024; 63:e202411073. [PMID: 38984498 DOI: 10.1002/anie.202411073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Nitrate esters hold pivotal roles in pharmaceuticals, energetic materials, and atmospheric processes, motivating the development of efficient synthesis routes. Here, we present a novel catalytic method for the synthesis of nitrates via the direct O-nitration of alcohols, addressing limitations of current traditional methods. Leveraging bench-stable and recoverable N,6-dinitrosaccharin reagent, our catalytic strategy employs magnesium triflate to achieve mild and selective O-nitration of alcohols, offering broad substrate scope and unprecedentedly large functional group tolerance (e.g. alkenes, alkynes, carbonyls). DFT mechanistic studies reveal a dual role of the magnesium catalyst in the activation of both the nitrating reagent and the alcohol substrate. They also unveil a barrierless proton transfer upon formation of a widely-accepted - yet elusive in solution - nitrooxonium ion intermediate. Overall, our work contributes to the development of mild, selective, and sustainable approaches to nitrates synthesis, with potential applications in drug discovery, materials science, and environmental chemistry.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Vasiliki Valsamidou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Dmitry Katayev
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Lv Y, Hao J, Huang J, Song L, Yue H, Wei W, Yi D. Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO. Chem Commun (Camb) 2024; 60:9801-9804. [PMID: 39162090 DOI: 10.1039/d4cc03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A metal-free and sustainable visible-light-mediated method for the preparation of organic nitrate esters has been developed through the aerobic nitrooxylation reaction of α-diazoesters and cyclic ethers with t-BuONO in the presence of dioxygen. This protocol provides an efficient approach to access nitrate esters with the advantages of clean energy, broad substrate scope, green oxidants, operational simplicity, and mild conditions.
Collapse
Affiliation(s)
- Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Lianhui Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 81000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China.
| |
Collapse
|
4
|
Iwanami A, Komori S, Ura Y. Alkyl nitrite-enabled palladium-catalyzed terminal selective oxidative cyclization of 4-penten-1-ols. Chem Commun (Camb) 2024; 60:7495-7498. [PMID: 38946406 DOI: 10.1039/d4cc02451f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oxidative cyclization of 4-penten-1-ols using a Pd catalyst and n-BuONO or n-BuONO/p-benzoquinone afforded 3-hydroxy- and 3-methoxytetrahydropyrans via terminal selective nucleophilic attack. The radicals formed from n-BuONO and O2 operate as critical oxidants and ligands for Pd.
Collapse
Affiliation(s)
- Ayaka Iwanami
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| | - Saki Komori
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| | - Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan.
| |
Collapse
|
5
|
Li H, Zhang B, Feng R, Guo S. An N-heterocyclic carbene-based pincer system of palladium and its versatile reactivity under oxidizing conditions. Dalton Trans 2024; 53:11470-11480. [PMID: 38912609 DOI: 10.1039/d4dt00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
NHC-based pincers (NHC = N-heterocyclic carbene) have been broadly employed as supporting platforms, and their palladium complexes have found many synthetic applications. However, previous studies mainly focused on the NHC pincers of palladium featuring an oxidation number of +II. In contrast, oxidation of these well-defined Pd(II) species and the study of their fundamental high-valent Pd chemistry remain largely undeveloped. In addition, from a perspective of PdII/PdIV catalysis, the reactivity and degradation of NHC pincers in catalytically relevant reactions have not been well understood. In this work, a series of Pd(II) complexes supported by a well-known NHC^Aryl^NHC pincer platform have been prepared. Their reactivity towards various oxidizing reagents, including halogen surrogates, electrophilic fluorine reagents, and alkyl/aryl halides, has been examined. In some cases, ambient-characterizable high-valent Pd NHCs, which have been scarcely reported, were obtained. The carbenes incorporated into the pincer framework proved to be effective spectator donors. In contrast, the central aryl moiety exhibits versatile reactivity and collapse pathways, allowing it to function either as a spectator or a non-innocent actor.
Collapse
Affiliation(s)
- Haobin Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Bo Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Rui Feng
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Shuai Guo
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
6
|
Saju A, Crawley MR, MacMillan SN, Lacy DC. Manganese(III) Nitrate Complexes as Bench-Stable Powerful Oxidants. J Am Chem Soc 2024; 146:11616-11621. [PMID: 38639535 DOI: 10.1021/jacs.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We report herein a convenient one-pot synthesis for the shelf-stable molecular complex [Mn(NO3)3(OPPh3)2] (2) and describe the properties that make it a powerful and selective one-electron oxidation (deelectronation) reagent. 2 has a high reduction potential of 1.02 V versus ferrocene (MeCN) (1.65 vs normal hydrogen electrode), which is one the highest known among readily available redox agents used in chemical synthesis. 2 exhibits stability toward air in the solid state, can be handled with relative ease, and is soluble in most common laboratory solvents such as MeCN, dichloromethane, and fluorobenzene. 2 is substitutionally labile with respect to the coordinated (pseudo)halide ions enabling the synthesis of other new Mn(III) nitrato complexes also with high reduction potentials ranging from 0.6 to 1.0 V versus ferrocene.
Collapse
Affiliation(s)
- Ananya Saju
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C Lacy
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Banerjee S, Punniyamurthy T. Palladium-Catalyzed Weak-Chelation-Assisted C4-Nitration of Indoles with tert-Butyl Nitrite: Formal Access to Aminated Indoles. Org Lett 2024; 26:988-993. [PMID: 38277494 DOI: 10.1021/acs.orglett.3c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Palladium-catalyzed weak-chelation-assisted C4-selective nitration of indoles has been accomplished employing tert-butyl nitrite in the presence of oxone under molecular oxygen at a moderate temperature. Aerobic conditions, C4-selectivity, substrate scope, conversion to valuable aminated indoles, and late-stage natural product modifications are the important practical features.
Collapse
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
8
|
Liu X, Gao FF, Xue Y, Luo J, Jiang C. Palladium-Catalyzed C(sp 3)-H Nitrooxylation of Aliphatic Carboxamides with Practical Oxidants. J Org Chem 2024; 89:1417-1424. [PMID: 38235669 DOI: 10.1021/acs.joc.3c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Here we report the palladium-catalyzed β-C(sp3)-H nitrooxylation of aliphatic carboxamides using a modified quinoline auxiliary. Notably, Al(NO3)3·9H2O was used as a nitrate source as well as a practical oxidant. The 5-chloro-8-aminoquinoline auxiliary was nitrated in situ during the reaction, which may enhance its directing ability and help its removal. The reaction has a broad substrate scope with a variety of aliphatic carboxamides. The multiple substituted auxiliary can be easily removed and recovered. Two C-H-insertion palladacycle intermediates were isolated and characterized to elucidate the mechanism.
Collapse
Affiliation(s)
- Xing Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Fang-Fang Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
9
|
Chen Y, Zhang S, Li T, Ma Q, Yuan Y, Jia X. Oxidants Controlled C-H Bond Functionalization of N-Aryltetrahydroisoquinolines: The Construction of the Quaternary Carbon Center and Cleavage of the C-N Bond. Chemistry 2024; 30:e202303151. [PMID: 37875461 DOI: 10.1002/chem.202303151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Initiated by triarylamine radical cation salt (TBPA), the direct C-H bond functionalization of α-N-aryltetrahydroisoquinoline esters was smoothly realized, giving a series of α-hydroxylated derivatives with a quaternary carbon center in good yields. Differently, in the presence of tert-butyl nitrite (TBN), the C-N single bond was cleaved to keto esters. The mechanistic study revealed that these reactions were mediated by a similar mechanism, in which the N-nitrosation might provide a driving force to the C-N bond cleavage.
Collapse
Affiliation(s)
- Yuqin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
10
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
11
|
Wu P, Wang L, Wu K, Yu Z. Copper(I)-Catalyzed Nitrosylation/Annulation Cascade of Enaminones with tert-Butyl Nitrite: Access to 1 H-1,2,3-Triazole 2-Oxides. Org Lett 2023; 25:8434-8438. [PMID: 37971421 DOI: 10.1021/acs.orglett.3c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The direct synthesis of triazole 2-oxides has posed a challenge in the field of N-heterocyclic chemistry. A novel copper(I)-catalyzed nitrosylation/annulation cascade of enaminones provides a straightforward route to 1H-1,2,3-triazole 2-oxides by forming new C-N, N=N, and N-N bonds using noncorrosive tert-butyl nitrite (TBN) as both the N and NO sources. The synthetic protocol features easily accessible starting materials, wide substrate scopes, and good tolerance toward various functional groups while avoiding use of explosive azides.
Collapse
Affiliation(s)
- Ping Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Liandi Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| |
Collapse
|
12
|
Sun Z, Zhang S, Ma Q, Li Y, Ding H, Yuan Y, Jia X. Tert-Butyl Nitrite-initiated C-N Bond Cleavage of 1-Nitromethyl-N-aryltetrahydroisoquinolines: Synthesis of Furoxans with N-NO Skeleton. Chem Asian J 2023; 18:e202201265. [PMID: 36655414 DOI: 10.1002/asia.202201265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
A series of furoxan derivatives with N-nitroso groups were synthesized in good yields by TBN initiated radical sp3 C-N bond cleavage of 1-nitromethyl-N-aryltetrahydroisoquinolines. This reaction grafts the biologically important furoxan skeleton and N-nitroso group into on molecule, greatly improving the molecular complexity in one step transformation. The mechanistic study shows that this reaction is mediated by the in situ generated α-carbonyl nitrile oxide, which is afforded by TBN promoted C-N bond cleavage.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yuemei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Han Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
13
|
Qi L, Dong M, Qian J, Yu S, Tong X. Pd 0 -Catalyzed Asymmetric Carbonitratation Reaction Featuring an H-Bonding-Driven Alkyl-Pd II -ONO 2 Reductive Elimination. Angew Chem Int Ed Engl 2023; 62:e202215397. [PMID: 36420824 DOI: 10.1002/anie.202215397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Reductive elimination of alkyl-PdII -O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4 ] and AgNO3 additive under toluene/H2 O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0 -catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I- and NO3 - , alkene insertion and SN 2-type alkyl-PdII -ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2 NO- ligand from the alkyl-PdII -ONO2 species, thus enabling the challenging alkyl-PdII -ONO2 reductive elimination to be feasible.
Collapse
Affiliation(s)
- Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
14
|
Xue Y, Zhou RB, Luo J, Hu BC, Liu ZQ, Jiang C. Palladium-catalyzed C(sp 3)-H nitrooxylation of masked alcohols. Org Biomol Chem 2022; 21:75-79. [PMID: 36448655 DOI: 10.1039/d2ob01919a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A palladium-catalyzed β-C(sp3)-H nitrooxylation of aliphatic alcohols with AgNO2 is reported. An 8-formylquinoline-derived oxime is installed as an exo-type directing group for sp3 C-H activation and selectfluor acts as the oxidant. The reaction tolerates a variety of functional groups and shows good selectivity for β-C-H nitrooxylation of alcohols.
Collapse
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Ruo-Bing Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bing-Cheng Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
15
|
Xue Y, Park HS, Jiang C, Yu JQ. Palladium-Catalyzed β-C(sp 3)–H Nitrooxylation of Ketones and Amides Using Practical Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Tang C, Qiu X, Cheng Z, Jiao N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem Soc Rev 2021; 50:8067-8101. [PMID: 34095935 DOI: 10.1039/d1cs00242b] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.
Collapse
Affiliation(s)
- Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Yun L, Zhao J, Tang X, Ma C, Yu Z, Meng Q. Selective Oxidation of Benzylic sp3 C–H Bonds using Molecular Oxygen in a Continuous-Flow Microreactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Yun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Xiaofei Tang
- Xi’an Modern Chemistry Research Institute, Xi’an, Shanxi 710065, P.R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
| | - QingWei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| |
Collapse
|
18
|
Zhang Q, Shi BF. 2-(Pyridin-2-yl)isopropyl (PIP) Amine: An Enabling Directing Group for Divergent and Asymmetric Functionalization of Unactivated Methylene C(sp 3)-H Bonds. Acc Chem Res 2021; 54:2750-2763. [PMID: 34019373 DOI: 10.1021/acs.accounts.1c00168] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directing group (DG) assistance provides a good solution to the problems of reactivity and selectivity, two of the fundamental challenges in C(sp3)-H activation. However, the activation of unbiased methylene C(sp3)-H bonds remains challenging due to the high heterolytic bond dissociation energy and substantial steric hindrance. Two main strategies have been developed thus far, that is, use of a strongly coordinating bidentate DG pioneered by Daugulis and use of a weakly coordinating monodentate DG accelerated by pyridine-type ligands, as disclosed by Yu. The seminal work by Daugulis sparked significant interest in the application of the monoanionic bidentate auxiliary in aliphatic C-H activation reactions. Our research has focused on enabling the divergent functionalization and enantiotopic differentiation of unactivated methylene C-H bonds. Inspired by the structure of bidentate 8-aminoquinoline and the accelerating effect of the gem-dimethyl moiety in cyclometalations, we developed a strongly coordinating bidentate 2-(pyridine-yl)isopropyl (PIP) amine DG consisting of a pyridyl group, a gem-dimethyl moiety, and an amino group, which enabled the divergent functionalization of unactivated β-methylene C(sp3)-H bonds to forge C-O, C-N, C-C, and C-F bonds with palladium catalysts. The exclusive β-selectivity was ascribed to the preferential formation of kinetically favored [5,5]-bicyclic palladacycle intermediates. DFT calculations revealed that the well-designed gem-dimethyl group was responsible for the lowered energy and compressed bite angle of the key transition state related to C-H cleavage.More recently, the combination of PIP amine with axially chiral ligands was found to promote asymmetric functionalization of unbiased methylene C(sp3)-H bonds, a challenging research topic in the area of C-H activation that remains to be addressed. Two different types of axially chiral ligands, namely, non-C2-symmetric chiral phosphoric acids (CPAs) and 3,3'-disubstituted BINOLs, have been developed. The former enabled Pd(II)-catalyzed inter- and intramolecular arylation of unbiased methylene C(sp3)-H bonds with high enantioselectivity, whereas the latter promoted a series of asymmetric functionalization reactions, such as alkynylation, arylation, alkenylation/aza-Wacker cyclization, and intramolecular amidation. The unexpectedly high stereocontrol compared with other bidentate DGs might be attributable to steric communication between the ligand and gem-dimethyl moiety of PIP amine. Thus far, the combination of PIP amine DG with 3,3'-disubstituted BINOL ligands is arguably the most general strategy for asymmetric functionalization of unbiased methylene C(sp3)-H bonds. Finally, the ease of installation and removal of PIP under mild conditions and synthetic applications are described.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
19
|
Zheng Y, Zhao Y, Tao S, Li X, Cheng X, Jiang G, Wan X. Green Esterification of Carboxylic Acids Promoted by
tert
‐Butyl Nitrite. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xingxing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| |
Collapse
|