1
|
Wu M, Wang Y, Lv X, Ma Z, Sheng X, Wang M, Zhang Y, An Z, Wang X. Direct α-C-H alkylation of alcohols via photoinduced hydrogen atom transfer. Org Biomol Chem 2025; 23:2365-2369. [PMID: 39907219 DOI: 10.1039/d4ob01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A general approach for the α-C-H alkylation of alcohols has been established, offering access to highly functionalized alcohols via visible light irradiation with TBAP as a co-catalyst. The methodology exhibits excellent functional group tolerance and a wide substrate scope. Its practicality is underscored by successful gram-scale synthesis and a sunlight-driven reaction demonstration.
Collapse
Affiliation(s)
- Mingzhong Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Yaru Wang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xin Lv
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Zhengxian Ma
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Xiaojing Sheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Mengjie Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| | - Yalin Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Zhenyu An
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xuekun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China.
| |
Collapse
|
2
|
Soliman E, Baek H, Mase N, Yamada YMA. Continuous-Flow Ritter Reaction for Sustainable Amide Synthesis Using a Recyclable m-Phenolsulfonic Acid-Formaldehyde Resin Catalyst. J Org Chem 2025; 90:1447-1454. [PMID: 39801057 DOI: 10.1021/acs.joc.4c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Herein, a rapid and efficient continuous-flow synthesis of amides is described. The Ritter reaction, catalyzed by a reusable solid acid catalyst composed of m-phenolsulfonic acid-formaldehyde resin (PAFR II), was used to convert nitriles and alcohols to amides in up to 90% yield. The continuous-flow system facilitates short reaction times and maintains activity for several weeks. This method is scalable, environmentally sustainable, and enables catalyst recycling.
Collapse
Affiliation(s)
- Eman Soliman
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
| | - Heeyoel Baek
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Nobuyuki Mase
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
3
|
Wang LC, Wu XF. Carbonylation Reactions at Carbon-Centered Radicals with an Adjacent Heteroatom. Angew Chem Int Ed Engl 2024; 63:e202413374. [PMID: 39248444 DOI: 10.1002/anie.202413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Heteroatoms are essential to living organisms and present in almost all molecules with medicinal usage. The catalytic functionalization at the carbon-centered radical with an adjacent heteroatom provides an effective way to value added moiety while retaining the unique physicochemical and pharmacological properties of heteroatoms, which can promote the development of pharmaceutical and fine chemical production. Carbonylative transformation was discovered nearly a century ago which is an efficient method for the synthesis of carbonyl-containing molecules with potent applications in both industry and academia. Despite numerous advances in new reaction development, carbonylative transformation involving adjacent heteroatom carbon radical remain a subject that deserves to be discussed. In this minireview, we systematically summarized and discussed the recent advances in carbonylative transformations involving carbon-centered radicals with an adjacent heteroatom, including oxygen (O), nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), boron (B), fluorine (F), and chlorine (Cl). The related reaction mechanism was also discussed.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
4
|
Fan H, Fang Y, Yu J. Direct alkene functionalization via photocatalytic hydrogen atom transfer from C(sp 3)-H compounds: a route to pharmaceutically important molecules. Chem Commun (Camb) 2024; 60:13796-13818. [PMID: 39526464 DOI: 10.1039/d4cc05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct functionalization of alkenes with C(sp3)-H substrates offers unique opportunities for the rapid construction of pharmaceuticals and natural products. Although significant progress has been made over the past decades, the development of green, high step-economy methods to achieve these transformations under mild conditions without the need for pre-functionalization of C(sp3)-H bonds remains a substantial challenge. Therefore, the pursuit of such methodologies is highly desirable. Recently, the direct activation of C(sp3)-H bonds via photocatalytic hydrogen atom transfer (HAT), especially from unactivated alkanes, has shown great promise. Given the potential of this approach to generate a wide range of pharmaceutically relevant compounds, this review highlights the recent advancements in the direct functionalization of alkenes through photocatalytic HAT from C(sp3)-H compounds, as well as their applications in the synthesis and diversification of drugs, natural products, and bioactive molecules, aiming to provide medicinal chemists with a practical set of tools.
Collapse
Affiliation(s)
- Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuxin Fang
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
5
|
Shlapakov NS, Kobelev AD, Burykina JV, Cheng YZ, You SL, Ananikov VP. Sulfur in Waste-Free Sustainable Synthesis: Advancing Carbon-Carbon Coupling Techniques. Angew Chem Int Ed Engl 2024; 63:e202402109. [PMID: 38421344 DOI: 10.1002/anie.202402109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.
Collapse
Affiliation(s)
- Nikita S Shlapakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Andrey D Kobelev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| |
Collapse
|
6
|
Pilli R, Selvam K, Balamurugan BSS, Jose V, Rasappan R. C(sp 3)-C(sp 3) Coupling of Cycloalkanes and Alkyl Halides via Dual Photocatalytic Hydrogen Atom Transfer and Nickel Catalysis. Org Lett 2024; 26:2993-2998. [PMID: 38592728 DOI: 10.1021/acs.orglett.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Functionalization of C(sp3)-H bonds represents the most straightforward and atom-economical transformation in organic synthesis. An innovative approach integrating photocatalytic hydrogen atom transfer (HAT) and transition metal catalysis has made significant progress in the coupling of α-heterosubstituted C-H bonds with alkyl halides. However, unactivated alkanes were ineffective as a result of the preponderance of byproduct formation. Herein, we demonstrate direct HAT and nickel catalysis in the coupling of cycloalkanes and benzyl bromides/primary alkyl iodides. Additionally, tetrabutylammonium decatungstate (TBADT) was recovered and recycled.
Collapse
Affiliation(s)
- Ramadevi Pilli
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Keerthika Selvam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Bala S S Balamurugan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vidya Jose
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
7
|
Simons RT, Nandakumar M, Kwon K, Ayer SK, Venneti NM, Roizen JL. Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C-H Bonds. J Am Chem Soc 2023; 145:10.1021/jacs.2c13409. [PMID: 36780585 PMCID: PMC10423309 DOI: 10.1021/jacs.2c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Site-selective functionalization of unactivated C(sp3)-H centers is challenging because of the ubiquity and strength of alkyl C-H bonds. Herein, we disclose a position-selective C(sp3)-C(sp2) cross-coupling reaction. This process engages C(sp3)-H bonds and aryl bromides, utilizing catalytic quantities of a photoredox-capable molecule and a nickel precatalyst. Using this technology, selective C-H functionalization arises owing to a 1,6-hydrogen atom transfer (HAT) process that is guided by a pendant alcohol-anchored sulfamate ester. These transformations proceed directly from N-H bonds, in contrast to previous directed, radical-mediated, C-H arylation processes, which have relied on prior oxidation of the reactive nitrogen center in reactions with nucleophilic arenes. Moreover, these conditions promote arylation at secondary centers in good yields with excellent selectivity.
Collapse
Affiliation(s)
- R. Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Naresh M. Venneti
- Wayne State University, Department of Chemistry, Detroit, MI 48202, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| |
Collapse
|
8
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
9
|
Ohmatsu K, Suzuki R, Fujita H, Ooi T. Zwitterionic Diphenylphosphinyl Amidate as a Powerful Photoinduced Hydrogen-Atom-Transfer Catalyst for C-H Alkylation of Simple Alkanes. J Org Chem 2023; 88:6553-6556. [PMID: 36606526 DOI: 10.1021/acs.joc.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The chemical and physical properties of amides change substantially when the electron-withdrawing groups attached to the nitrogen are varied. Herein, we report the superior performance of N-diphenylphosphinyl 1,2,3-triazolium amidate as a photoinduced hydrogen-atom transfer catalyst compared to its N-benzoyl analog. A binary catalyst system of the phosphinyl amidate and an Ir-based photocatalyst enables the alkylation of unbiased C-H bonds.
Collapse
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Ryuhei Suzuki
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroki Fujita
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Liu F, Zhang K, Zhao XF, Meng QX, Zhao TS, Tian WF, He YQ. Photoinduced Stereoselective Hydroalkylation of Terminal Arylalkynes via C(sp3)-H Functionalization. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ionic Liquid Mediated Triple Catalysis for Alkylation and Methylation of Acyl Chlorides with Mechanistic Insight. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Kim C, Jeong J, Vellakkaran M, Hong S. Photocatalytic Decarboxylative Pyridylation of Carboxylic Acids Using In Situ-Generated Amidyl Radicals as Oxidants. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Mari Vellakkaran
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
13
|
Wang B, Ascenzi Pettenuzzo C, Singh J, Mccabe GE, Clark L, Young R, Pu J, Deng Y. Photoinduced Site-Selective Functionalization of Aliphatic C–H Bonds by Pyridine N-oxide Based HAT Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Cristina Ascenzi Pettenuzzo
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Gavin E. Mccabe
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Logan Clark
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Ryan Young
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
14
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
15
|
Gao H, Guo L, Shi C, Zhu Y, Yang C, Xia W. Transition Metal‐Free Radical α‐Oxy C−H Cyclobutylation via Photoinduced Hydrogen Atom Transfer. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Han Gao
- State Key Lab of Urban Water Resource and Environment, School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Chengcheng Shi
- State Key Lab of Urban Water Resource and Environment, School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Yining Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
16
|
Min S, Park B, Nedsaengtip J, Hyeok Hong S. Mechanochemical Direct Fluorination of Unactivated C(
sp
3
)−H Bonds. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sehye Min
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Beomsoon Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jantakan Nedsaengtip
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
17
|
Fuse H, Irie Y, Fuki M, Kobori Y, Kato K, Yamakata A, Higashi M, Mitsunuma H, Kanai M. Identification of a Self-Photosensitizing Hydrogen Atom Transfer Organocatalyst System. J Am Chem Soc 2022; 144:6566-6574. [PMID: 35357152 DOI: 10.1021/jacs.2c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed organocatalyst systems to promote the cleavage of stable C-H bonds, such as formyl, α-hydroxy, and benzylic C-H bonds, through a hydrogen atom transfer (HAT) process without the use of exogenous photosensitizers. An electronically tuned thiophosphoric acid, 7,7'-OMe-TPA, was assembled with substrate or co-catalyst N-heteroaromatics through hydrogen bonding and π-π interactions to form electron donor-acceptor (EDA) complexes. Photoirradiation of the EDA complex induced stepwise, sequential single-electron transfer (SET) processes to generate a HAT-active thiyl radical. The first SET was from the electron-rich naphthyl group of 7,7'-OMe-TPA to the protonated N-heteroaromatics and the second proton-coupled SET (PCET) from the thiophosphoric acid moiety of 7,7'-OMe-TPA to the resulting naphthyl radical cation. Spectroscopic studies and theoretical calculations characterized the stepwise SET process mediated by short-lived intermediates. This organocatalytic HAT system was applied to four different carbon-hydrogen (C-H) functionalization reactions, hydroxyalkylation and alkylation of N-heteroaromatics, acceptorless dehydrogenation of alcohols, and benzylation of imines, with high functional group tolerance.
Collapse
Affiliation(s)
- Hiromu Fuse
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yu Irie
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kosaku Kato
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Akira Yamakata
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
19
|
Matsumoto A, Yamamoto M, Maruoka K. Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masanori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
22
|
Xie X, Li Y, Xia Y, Luo K, Wu L. Visible Light‐Induced Metal‐Free and Oxidant‐Free Radical Cyclization of (2‐Isocyanoaryl)(methyl)sulfanes with Ethers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao‐Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yun‐Tao Xia
- School of Chemistry & Chemical Engineering Henan University of Technology Zhengzhou 450001 P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
- College of Chemical Engineering Xinjiang Agricultural University Urumqi 830052 P. R. China
| |
Collapse
|
23
|
López E, Melis C, Martín R, Petti A, Hoz A, Díaz‐Ortíz Á, Dobbs AP, Lam K, Alcázar J. C(
sp
3
)−C(
sp
3
) Bond Formation
via
Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Enol López
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Carlo Melis
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Raúl Martín
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Alessia Petti
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Antonio Hoz
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Ángel Díaz‐Ortíz
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Adrian P. Dobbs
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Kevin Lam
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Jesús Alcázar
- Lead Discovery Janssen Research and Development Janssen-Cilag, S.A. Jarama 75 A 45007 Toledo Spain
| |
Collapse
|
24
|
Gorelik DJ, Turner JA, Virk TS, Foucher DA, Taylor MS. Site- and Stereoselective C-H Alkylations of Carbohydrates Enabled by Cooperative Photoredox, Hydrogen Atom Transfer, and Organotin Catalysis. Org Lett 2021; 23:5180-5185. [PMID: 34133881 DOI: 10.1021/acs.orglett.1c01718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diorganotin dihalides act as cocatalysts for site-selective and stereoselective couplings of diol-containing carbohydrates with electron-deficient alkenes in the presence of an Ir(III) photoredox catalyst and quinuclidine, a hydrogen atom transfer mediator. Quantum-chemical calculations support a proposed mechanism involving the formation of a cyclic stannylene acetal intermediate that shows enhanced reactivity toward hydrogen atom abstraction by the quinuclidinium radical cation. Addition of the carbon-centered radical to the alkene partner results in C-alkylation of the carbohydrate substrate.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tarunpreet S Virk
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Daniel A Foucher
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
25
|
Cai BG, Li L, Xu GY, Xiao WJ, Xuan J. Visible-light-promoted nitrone synthesis from nitrosoarenes under catalyst- and additive-free conditions. Photochem Photobiol Sci 2021; 20:823-829. [PMID: 34115366 DOI: 10.1007/s43630-021-00062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
A green and sustainable nitrone formation reaction via visible-light-promoted reaction of aryl diazoacetates with nitrosoarenes is described. This protocol exhibits good functional group tolerance and broad substrate scope for both aryl diazoacetates with nitrosoarenes. Comparing the reported methods for the synthesis of nitrones from nitrosoarenes, the reaction described herein occurs under sole visible-light irradiation without the need of any catalysts and additives.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Lin Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| |
Collapse
|