1
|
Zhang ZX, Zhang B, Yuan M, Zhao PF, Da CS. Pd(II)-Catalyzed C4-Selective Alkynylation of Indoles by a Transient Directing Group. Org Lett 2024; 26:6819-6824. [PMID: 39106047 DOI: 10.1021/acs.orglett.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
With alanine as a transient directing group, Pd-catalyzed regioselective alkynylation at the indole C4-position was successfully established in a good yield. The total synthesis of the PAF antagonist demonstrated the synthetic utility of this protocol. The regioselectivity was explicitly proven by the prepared C4-selective palladacycle intermediate in the catalytic process and the DFT calculation of the energy barriers of C4- and C2-site-selective C-H activation of indole.
Collapse
Affiliation(s)
- Ze-Xuan Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bing Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Meng Yuan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao-Shan Da
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Zhou P, Liang X, Xu Z, Chen H, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent C-H alkynylation of 2-arylthiazoles switched by Ru II and Pd II catalysis. Chem Commun (Camb) 2024; 60:6679-6682. [PMID: 38860866 DOI: 10.1039/d4cc02254h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Two complementary regiodivergent C-H alkynylations of 2-arylthiazoles are reported. When RuII catalysis is employed, an aryl ortho-alkynylation process is favored. The alkynylated products are gained in good yields. With the use of PdII catalysis, a thiazole C5-alkynylation process is developed, allowing for the construction of C5-alkynylated products. This strategy not only expands the methods for the functionalization of 2-arylthiazoles, but also provides new opportunities for the rapid assembly of complex molecular structures, which may have great potential in organic synthesis, medicinal chemistry, and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinyao Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zekun Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Honggu Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
3
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Baghel AS, Pratap R, Kumar A. Ru(II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero)Aryl Ketones. J Org Chem 2023. [PMID: 37307505 DOI: 10.1021/acs.joc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalized aryl(heteroaryl) ketones are present in many natural products as key structural components and serve as basic synthetic building blocks for various organic transformation reactions. Therefore, the development of an effective and sustainable route for making these classes of compounds remains challenging yet highly desirable. Herein, we report a simple and efficient catalytic system for dialkynylation of aromatic/heteroaromatic ketones via a double C-H bond activation in the presence of less expensive ruthenium(II)-salt as a catalyst using the weakly and native carbonyl group as the desired directing group. The developed protocol is highly compatible, tolerant, and sustainable toward various functional groups. The synthetic utility of the developed protocol has been demonstrated through the scale-up synthesis and functional group transformation. Control experiments support the involvement of the base-assisted internal electrophilic substitution (BIES) reaction pathway.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Ramendra Pratap
- Department of Chemistry, Delhi University, Delhi 110007, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
5
|
Zhou J, Jiao T, Fu Q, Wang J, Lu J, Yang L, Wei J, Wei S, Cong X, Hao N. Catalytic C-H alkynylation of benzylamines and aldehydes with aldimine-directing groups generated in situ. Chem Commun (Camb) 2023; 59:6355-6358. [PMID: 37139669 DOI: 10.1039/d3cc01414b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Iridium-catalysed regioselective C-H alkynylation of unprotected primary benzylamines and aliphatic aldehydes has been achieved using in situ-installed aldimine directing groups. This protocol provides a straightforward route for the synthesis of the alkynylated primary benzylamine and aliphatic aldehyde derivatives, featuring good substrate compatibility and high regioselectivity.
Collapse
Affiliation(s)
- Jiao Zhou
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tenggang Jiao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Fu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Lin Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Xuefeng Cong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Na Hao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
6
|
Baghel AS, Kumar A. Ru(II)-catalyzed external auxiliary-free primary amide-directed inverse Sonogashira reaction on (hetero)arylamides. Chem Commun (Camb) 2022; 58:11304-11307. [PMID: 36124904 DOI: 10.1039/d2cc03929j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report ruthenium(II)-catalyzed weakly coordinating primary amide-assisted ortho-di-alkynylation of (hetero)arylamides via double C-H bond activation in the presence of bromo-alkynes as coupling partners. The attractive features of the developed strategy lie in the usage of an inexpensive ruthenium(II)-salt, external auxiliary-free directing group and simple reaction conditions, along with a broad substrate scope, high reaction yields and scale-up synthesis.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India.
| |
Collapse
|
7
|
Saha A, Ghosh A, Guin S, Panda S, Mal DK, Majumdar A, Akita M, Maiti D. Substrate‐Rhodium Cooperativity in Photoinduced
ortho
‐Alkynylation of Arenes. Angew Chem Int Ed Engl 2022; 61:e202210492. [DOI: 10.1002/anie.202210492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Argha Saha
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Animesh Ghosh
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Srimanta Guin
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sanjib Panda
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Dibya Kanti Mal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Abhirup Majumdar
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Munetaka Akita
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology Tokyo Japan
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
8
|
Saha A, Ghosh A, Guin S, Panda S, Mal DK, Majumdar A, Akita M, Maiti D. Substrate‐Rhodium Cooperativity in Photoinduced ortho‐Alkynylation of Arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Argha Saha
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Animesh Ghosh
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Srimanta Guin
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Sanjib Panda
- Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Dibya Kanti Mal
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Abhirup Majumdar
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Munetaka Akita
- Tokyo Institute of Technology Chemistry and Life Science JAPAN
| | - Debabrata Maiti
- Indian Institute of Technology-Bombay Department of Chemistry Powai 400076 Mumbai INDIA
| |
Collapse
|
9
|
Mori A, Curpanen S, Pezzetta C, Perez-Luna A, Poli G, Oble J. C–H Activation Based Functionalizations of Furfural Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessia Mori
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| | | | | | | | | | - Julie Oble
- Sorbonne Université: Sorbonne Universite IPCM FRANCE
| |
Collapse
|
10
|
Masani Y, Omura Y, Tachi Y, Kozaki M. Synthesis of Triazabenzo[
a
]pyrenes and Their Photophysical, Acid‐Responsive, and Electrochemical Properties. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yasufumi Masani
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yuta Omura
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yoshimitsu Tachi
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Masatoshi Kozaki
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| |
Collapse
|
11
|
Ma L, Zhang X, Tuo Y, Zheng QZ. Cp*Rh(III)-Catalyzed Regioselective C(sp 2)-H Mono- and Dialkynylation of Thioamides by Sulfur Coordination. J Org Chem 2022; 87:3691-3700. [PMID: 35138097 DOI: 10.1021/acs.joc.1c02622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Cp*Rh(III)-catalyzed regioselective C(sp2)-H mono- and dialkynylation of thioamides was described. This reaction was performed under mild conditions in high yields (up to 98%) with a broad substrate scope. Significantly, the versatility of this method was further demonstrated by controlled mono- and dialkynylation. Application of this protocol in the late stage functionalization of two drug molecules (Adapalene and Amoxapine) was also demonstrated.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaohui Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yanyan Tuo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qing-Zhong Zheng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| |
Collapse
|
12
|
Tan E, Montesinos-Magraner M, García-Morales C, Mayans JG, Echavarren AM. Rhodium-catalysed ortho-alkynylation of nitroarenes. Chem Sci 2021; 12:14731-14739. [PMID: 34820088 PMCID: PMC8597868 DOI: 10.1039/d1sc04527j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
The ortho-alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds via a turnover-limiting electrophilic C-H metalation ortho to the strongly electron-withdrawing nitro group.
Collapse
Affiliation(s)
- Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Marc Montesinos-Magraner
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Cristina García-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Joan Guillem Mayans
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
13
|
Mandal R, Barsu N, Garai B, Das A, Perekalin D, Sundararaju B. Room-temperature C-H bond alkynylation by merging cobalt and photocatalysts. Chem Commun (Camb) 2021; 57:12167-12170. [PMID: 34726212 DOI: 10.1039/d1cc05263b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new protocol is developed for the mono- and bis-ortho-C-H alkynylation of easily accessible benzamide derivatives using alkynyl bromides at room temperature by merging cobalt and photocatalysts. The diverse reactivity of various alkynyl bromides towards the C-H alkynylation and competing C-H/N-H bond annulation reactions has been demonstrated to give the corresponding products in good yields with excellent functional group tolerance.
Collapse
Affiliation(s)
- Rajib Mandal
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Nagaraju Barsu
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Bholanath Garai
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Abir Das
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| | - Dmitry Perekalin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., Moscow, Russia
| | - Basker Sundararaju
- Department of chemistry, Indian Institute of technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
14
|
Nabavizadeh SM, Molaee H, Haddadi E, Niroomand Hosseini F, Hoseini SJ, Abu-Omar MM. Tetranuclear rollover cyclometalated organoplatinum-rhenium compounds; C-I oxidative addition and C-C reductive elimination using a rollover cycloplatinated dimer. Dalton Trans 2021; 50:15015-15026. [PMID: 34609403 DOI: 10.1039/d1dt02086b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel tetranuclear Pt(IV)-Re(VII) complex [Pt2Me4(OReO3)2(PMePh2)2(µ-bpy-2H)], 4, is synthesized through the reaction of silver perrhenate with a new rollover cycloplatinated(IV) complex [Pt2Me4I2(PMePh2)2(µ-bpy-2H)], 3. In complex 4, while 2,2'-bipyridine (bpy) acts as a linker between two Pt metal centers, oxygen acts as a mono-bridging atom between Pt and Re centers through an unsupported Pt(IV)-O-Re(VII) bridge. The precursor rollover cycloplatinated(IV) complex 3 is prepared by the MeI oxidative addition reaction of the rollover cycloplatinated(II) complex [Pt2Me2(PMePh2)2(µ-bpy-2H)], 2. Complex 2 shows a metal-to-ligand charge-transfer band in the visible region, which was used to investigate the kinetics and mechanism of its double MeI oxidative addition reaction. Based on the experimental findings, the classical SN2 mechanism was suggested for both steps and supported by computational studies. All complexes are fully characterized using multinuclear NMR spectroscopy and elemental analysis. Attempts to grow crystals of the rollover cycloplatinated(IV) dimer 3 yielded a new dimer rollover cyclometalated complex [Pt2I2(PMePh2)2(µ-bpy-2H)], 5, presumably from the C-C reductive elimination of ethane. The identity of complex 5 was confirmed by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Hajar Molaee
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Elahe Haddadi
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | | | - S Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Mahdi M Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
15
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
16
|
Xu X, Feng H, Van der Eycken EV. Microwave-Assisted Palladium-Catalyzed Reductive Cyclization/Ring-Opening/Aromatization Cascade of Oxazolidines to Isoquinolines. Org Lett 2021; 23:6578-6582. [PMID: 34379418 DOI: 10.1021/acs.orglett.1c02416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient palladium-catalyzed reaction of N-propargyl oxazolidines for the construction of 4-substituted isoquinolines under microwave irradiation is developed. This transformation proceeds through a sequential palladium-catalyzed reductive cyclization/ring-opening/aromatization cascade via C-O and C-N bond cleavages of the oxazolidine ring. The practical value of this method has also been explored by conducting a millimole-scale reaction, as well as by transforming the isoquinoline into a key intermediate for the synthesis of a lamellarin analogue.
Collapse
Affiliation(s)
- Xianjun Xu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow 117198, Russia
| |
Collapse
|