1
|
Huang HL, Shi YQ, Ning JX, Li S, Song DT, Gao F, Ma N. Recent Advances in the Synthesis of Cyclic Sulfone Compounds with Potential Biological Activity. Molecules 2024; 29:5868. [PMID: 39769957 PMCID: PMC11678439 DOI: 10.3390/molecules29245868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
In recent years, cyclic sulfone compounds, a subset of biologically active heterocyclic compounds, have gained considerable attention due to their potential in the development of novel active pharmaceutical ingredients. This review focuses on identifying simple, mild, environmentally friendly, and efficient synthesis methods. Various catalytic approaches for the synthesis of cyclic sulfone compounds are systematically reviewed, highlighting their advantages and potential applications in pharmaceutical development.
Collapse
Affiliation(s)
- Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ya-Qian Shi
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Xin Ning
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Shan Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Dian-Tao Song
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fei Gao
- Shanghai Kinlita Chemical Co., Ltd., Shanghai 201417, China;
| | - Na Ma
- Shanghai Kinlita Chemical Co., Ltd., Shanghai 201417, China;
| |
Collapse
|
2
|
La Spada G, Miniero DV, Rullo M, Cipolloni M, Delre P, Colliva C, Colella M, Leonetti F, Liuzzi GM, Mangiatordi GF, Giacchè N, Pisani L. Structure-based design of multitargeting ChEs-MAO B inhibitors based on phenyl ring bioisosteres: AChE/BChE selectivity switch and drug-like characterization. Eur J Med Chem 2024; 274:116511. [PMID: 38820854 DOI: 10.1016/j.ejmech.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
A structure-based drug design approach was focused on incorporating phenyl ring heterocyclic bioisosteres into coumarin derivative 1, previously reported as potent dual AChE-MAO B inhibitor, with the aim of improving drug-like features. Structure-activity relationships highlighted that bioisosteric rings were tolerated by hMAO B enzymatic cleft more than hAChE. Interestingly, linker homologation at the basic nitrogen enabled selectivity to switch from hAChE to hBChE. In the present work, we identified thiophene-based isosteres 7 and 15 as dual AChE-MAO B (IC50 = 261 and 15 nM, respectively) and BChE-MAO B (IC50 = 375 and 20 nM, respectively) inhibitors, respectively. Both 7 and 15 were moderately water-soluble and membrane-permeant agents by passive diffusion (PAMPA-HDM). Moreover, they were able to counteract oxidative damage induced by both H2O2 and 6-OHDA in SH-SY5Y cells and predicted to penetrate into CNS in a cell-based model mimicking blood-brain barrier. Molecular dynamics (MD) simulations shed light on key differences in AChE and BChE recognition processes promoted by the basic chain homologation from 7 to 15.
Collapse
Affiliation(s)
- Gabriella La Spada
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Dept. of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Mariagrazia Rullo
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Marco Cipolloni
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Pietro Delre
- CNR, Institute of Crystallography, 70126, Bari, Italy
| | - Carolina Colliva
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Marco Colella
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Francesco Leonetti
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Dept. of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | | | - Nicola Giacchè
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Leonardo Pisani
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
3
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
4
|
Shuai S, Mao J, Zhou F, Yan Q, Chen L, Li J, Walsh PJ, Liang G. Base-Promoted Synthesis of Isoquinolines through a Tandem Reaction of 2-Methyl-arylaldehydes and Nitriles. J Org Chem 2024; 89:6793-6797. [PMID: 38691096 DOI: 10.1021/acs.joc.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A convenient method for preparing 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply combining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3)2, and Cs2CO3 enabled the synthesis of a variety of isoquinolines (23 examples, ≤90% yield). Among the syntheses of isoquinolines, the transition metal-free method described here is straightforward, practical, and operationally simple.
Collapse
Affiliation(s)
- Sujuan Shuai
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fan Zhou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qifeng Yan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
5
|
Ma P, Wang Y, Ma N, Wang J. Alkaline-Metal-Promoted Divergent Synthesis of 1-Aminoisoquinolines and Isoquinolines. J Org Chem 2024. [PMID: 38193431 DOI: 10.1021/acs.joc.3c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Alkaline-metal-promoted divergent syntheses of 1-aminoisoquinolines and isoquinolines have been reported involving 2-methylaryl aldehydes, nitriles, and LiN(SiMe3)2 as reactants. In addition, the three-component reaction of 2-methylaryl nitriles, aldehydes, and LiN(SiMe3)2 has been developed to furnish 1-aminoisoquinolines. This protocol features readily available starting materials, excellent chemoselectivity, broad substrate scope, and satisfactory yields.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ning Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Chen S, Tan J, Wu H, Zhao Q, Shang Y. Base-promoted tandem synthesis of 2-azaaryl indoline. Org Biomol Chem 2023; 21:9133-9137. [PMID: 37974521 DOI: 10.1039/d3ob01444d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A novel tandem method to synthesize 2-azaaryl indoline promoted by LiN(SiMe3)2 from 2-azaaryl methyl amine and 2-fluoro benzyl bromides was developed. Mechanistic investigation indicated that this tandem cyclization was initiated by selective benzyl C-SN2 substitution followed by an intramolecular SNAr reaction. Diverse 2-azaaryl indoles could also be obtained via simple functional transformations.
Collapse
Affiliation(s)
- Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Jiahong Tan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Quansheng Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
7
|
Sherborne GJ, Kemmitt P, Prentice C, Zysman-Colman E, Smith AD, Fallan C. Visible Light-Mediated Cyclisation Reaction for the Synthesis of Highly-Substituted Tetrahydroquinolines and Quinolines. Angew Chem Int Ed Engl 2023; 62:e202207829. [PMID: 36342443 DOI: 10.1002/anie.202207829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Condensation of 2-vinylanilines and conjugated aldehydes followed by an efficient light-mediated cyclisation selectively yields either substituted tetrahydroquinolines with typically high dr, or in the presence of an iridium photocatalyst the synthesis of quinoline derivatives is demonstrated. These atom economical processes require mild conditions, with the substrate scope demonstrating excellent site selectivity and functional group tolerance, including azaarene-bearing substrates. A thorough experimental mechanistic investigation explores multiple pathways and the key role that imine and iminium intermediates play in the absorption of visible light to generate reactive excited states. The synthetic utility of the reactions is demonstrated on gram scale quantities in both batch and flow, alongside further manipulation of the medicinally relevant products.
Collapse
Affiliation(s)
- Grant J Sherborne
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| | - Paul Kemmitt
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| | - Callum Prentice
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.,EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Charlene Fallan
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| |
Collapse
|
8
|
Kou S, Huo J, Wang Y, Sun S, Xue F, Mao J, Zhang J, Chen L, Walsh PJ. Synthesis of Indoles via Domino Reactions of 2-Methoxytoluene and Nitriles. J Org Chem 2022; 88:5147-5152. [PMID: 36520533 DOI: 10.1021/acs.joc.2c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
2-Arylindoles are privileged structures widely present in biologically active molecules. New sustainable synthetic routes toward their synthesis are, therefore, in high demand. Herein, a mixed base-promoted benzylic C-H deprotonation of commercially available ortho-anisoles, addition of the resulting anion to benzonitriles, and SNAr to displace the methoxy group provide indoles. A diverse array of 2-arylindoles is prepared with good yields (>30 examples, yields up to 99%) without added transition metal catalysts.
Collapse
Affiliation(s)
- Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Yuan Y, Gu Y, Wang YE, Zheng J, Ji J, Xiong D, Xue F, Mao J. One-Pot Rapid Access to Benzyl Silanes, Germanes, and Stannanes from Toluenes Mediated by a LiN(SiMe 3) 2/CsCl System. J Org Chem 2022; 87:13907-13918. [DOI: 10.1021/acs.joc.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqi Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
10
|
Huo J, Chen L, Si H, Yuan S, Li J, Dong H, Hu S, Huo J, Kou S, Xiong D, Mao J, Zhang J. 2-Arylindoles: Concise Syntheses and a Privileged Scaffold for Fungicide Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6982-6992. [PMID: 35658436 DOI: 10.1021/acs.jafc.1c08085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Indole is a popular and functional scaffold existing widely in the fields of medicine, pesticides, spices, food and feed additives, dyes, and many others. Among indoles, 2-arylindole represents a particular and interesting subset but has attracted less attention for drug discovery. In this study, we report a general, practical one-pot assembly of a variety of 2-arylindole derivatives. To develop novel fungicide scaffolds, their fungicide activity was also evaluated. The bioassay results showed that many of the synthesized 2-arylindoles exhibited considerable fungicidal activities especially toward Rhizoctonia cerealis, and several demonstrated an inhibition rate of more than 90%. Notably, 4-fluoro-2-phenyl-1H-indole 6e was obtained with a broad spectrum of fungicidal activities, which showed excellent growth inhibition activities against R. cerealis, Rhizoctonia solani, Botrytis cinerea, Magnaporthe oryza, and Sclerotinia sclerotiorum with EC50 values of 2.31, 4.98, 6.78, 10.57, and 17.80 μg/mL, respectively. Preliminary fungicidal mode of action of 6e showed a significant inhibition effect on mycelial growth and spore germination. These results indicated that 2-arylindoles as privileged scaffolds exhibited potential fungicidal activities that deserve further study.
Collapse
Affiliation(s)
- Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Helong Si
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shitao Yuan
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jiahui Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Haijiao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jinglei Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engi-neering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engi-neering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, P. R. China
| |
Collapse
|
11
|
Xu X, Ou M, Wang YE, Lin T, Xiong D, Xue F, Walsh P, Mao J. Alkali-Amide Controlled Selective Synthesis of 7-Azaindole and 7-Azaindoline through Domino Reactions of 2-Fluoro-3-methylpyridine and Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00339b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azaindoles and azaindolines are important core structures in pharmaceuticals and natural products, which have found wide applications in the field of medicinal chemistrty. In this study, we developed a novel...
Collapse
|
12
|
Sun LW, Yu ZL, Luo XL, Ma M, Shen ZL, Chu XQ. Transition-metal-free hydroamination/defluorination/cyclization of perfluoroalkyl alkynes with amidines. Org Chem Front 2022. [DOI: 10.1039/d1qo01439k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient defluorinative cyclization strategy for the construction of perfluoroalkyl-substituted pyrimidines by using perfluoroalkyl alkynes and amidines as substrates was developed.
Collapse
Affiliation(s)
- Li-Wen Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Lun Yu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin-Long Luo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Fan GG, Jiang BW, Sang W, Cheng H, Zhang R, Yu BY, Yuan Y, Chen C, Verpoort F. Metal-Free Synthesis of Heteroaryl Amines or Their Hydrochlorides via an External-Base-Free and Solvent-Free C-N Coupling Protocol. J Org Chem 2021; 86:14627-14639. [PMID: 34658240 DOI: 10.1021/acs.joc.1c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a metal-free and solvent-free protocol was developed for the C-N coupling of heteroaryl halides and amines, which afforded numerous heteroaryl amines or their hydrochlorides without any external base. Further investigations elucidated that the basicity of amines and specific interactions derived from the X-ray crystallography analysis of 3j'·HCl played pivotal roles in the reactions. Moreover, this protocol was scalable to gram scales and applicable to drug molecules, which demonstrated its practical value for further applications.
Collapse
Affiliation(s)
- Guang-Gao Fan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Bo-Wen Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Hua Cheng
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, PR China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beinong Road 7, Beijing 102206, PR China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.,National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.,Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Korea
| |
Collapse
|
14
|
Askey H, Grayson JD, Tibbetts JD, Turner-Dore JC, Holmes JM, Kociok-Kohn G, Wrigley GL, Cresswell AJ. Photocatalytic Hydroaminoalkylation of Styrenes with Unprotected Primary Alkylamines. J Am Chem Soc 2021; 143:15936-15945. [PMID: 34543004 PMCID: PMC8499025 DOI: 10.1021/jacs.1c07401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/27/2022]
Abstract
Catalytic, intermolecular hydroaminoalkylation (HAA) of styrenes provides a powerful disconnection for pharmacologically relevant γ-arylamines, but current methods cannot utilize unprotected primary alkylamines as feedstocks. Metal-catalyzed HAA protocols are also highly sensitive to α-substitution on the amine partner, and no catalytic solutions exist for α-tertiary γ-arylamine synthesis via this approach. We report a solution to these problems using organophotoredox catalysis, enabling a direct, modular, and sustainable preparation of α-(di)substituted γ-arylamines, including challenging electron-neutral and moderately electron-rich aryl groups. A broad range of functionalities are tolerated, and the reactions can be run on multigram scale in continuous flow. The method is applied to a concise, protecting-group-free synthesis of the blockbuster drug Fingolimod, as well as a phosphonate mimic of its in vivo active form (by iterative α-C-H functionalization of ethanolamine). The reaction can also be sequenced with an intramolecular N-arylation to provide a general and modular access to valuable (spirocyclic) 1,2,3,4-tetrahydroquinolines and 1,2,3,4-tetrahydronaphthyridines. Mechanistic and kinetic studies support an irreversible hydrogen atom transfer activation of the alkylamine by the azidyl radical and some contribution from a radical chain. The reaction is photon-limited and exhibits a zero-order dependence on amine, azide, and photocatalyst, with a first-order dependence on styrene.
Collapse
Affiliation(s)
- Hannah
E. Askey
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - James D. Grayson
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Joshua D. Tibbetts
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Jake M. Holmes
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Gabriele Kociok-Kohn
- Materials
and Chemical Characterisation Facility (MC), University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Gail L. Wrigley
- Oncology
R&D, Research & Early Development, AstraZeneca, Darwin Building, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K.
| | | |
Collapse
|
15
|
Lázaro‐Milla C, Almendros P. A Convenient Formal [4+2] Heterocylization Route to Bis(triflyl)tetrahydroquinolines. Chemistry 2021; 27:13534-13538. [PMID: 34369000 PMCID: PMC8519061 DOI: 10.1002/chem.202102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/23/2022]
Abstract
We report the sustainable and efficient synthesis of a new type of quinoline derivatives bearing one or two SO2 CF3 groups. The protocol is metal-, catalyst- and irradiation-free, involves the use of readily available and stable precursors, and avoids the formation of side products. Also, the mild conditions of the process allow the tolerance of a wide range of functional groups.
Collapse
Affiliation(s)
- Carlos Lázaro‐Milla
- Grupo de Lactamas y Heterociclos BioactivosUnidad Asociada al CSICDepartamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de Madrid28040MadridSpain
| | - Pedro Almendros
- Instituto de Química Orgánica General, IQOGConsejo Superior de Investigaciones CientíficasCSICJuan de la Cierva 328006MadridSpain
| |
Collapse
|
16
|
Chen L, Huo JQ, Si HL, Xu XY, Kou S, Mao J, Zhang JL. One-Pot Synthesis of N-H-Free Pyrroles from Aldehydes and Alkynes. Org Lett 2021; 23:4348-4352. [PMID: 34014098 DOI: 10.1021/acs.orglett.1c01287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first base-mediated intermolecular cyclization of arylaldehydes and terminal arylacetylenes for the synthesis of a wide range of pyrroles in a single step has been described. The developed methodology used commercially available starting materials and tolerated a broad range of functional groups affording 2,3,5-triaryl-substituted-1H-pyrroles with good yields (up to 92% yield) under mild conditions. The possible mechanism was also discussed.
Collapse
Affiliation(s)
- Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jing-Qian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - He-Long Si
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Xin-Yu Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jin-Lin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|