1
|
Echizen K, Akine S, Furuyama T, Nishimura T, Maeda K, Taniguchi T. Structures and Properties of Axially Chiral (2E,4E,6Z,8Z)-Nona-2,4,6,8-Tetraenoate Derivatives Highly Substituted by Aryl Groups. Chemistry 2025:e202404565. [PMID: 39803981 DOI: 10.1002/chem.202404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Unprecedented (2E,4E,6Z,8Z)-nona-2,4,6,8-tetraenoate derivatives highly substituted by aryl groups have been synthesized by the reaction of rhodium complexes having aryl-substituted hexa-1,3,5-trienyl ligands with acrylates. These compounds have potential axial chirality, and their enantiomers are isolable by the chiral HPLC technique. Although the racemization barrier of isolated enantiomers was not high, it was found that a cyclic dimer synthesized by head-to-tail transesterification of a modified analog has quite a stable axial chirality even at a high temperature. From a structural analogy with tetraphenylethene, those compounds are emissive in the solid state, and the chiral cyclic dimer exhibits solid-state circularly polarized luminescence (CPL) activity.
Collapse
Affiliation(s)
- Kensuke Echizen
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Taniyuki Furuyama
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
2
|
Suresh S, Kavala V, Yao CF. Iodine-Catalyzed Annulation Reaction of Ortho-Formylarylketones with Indoles: A General Strategy for the Synthesis of Indolylbenzo[ b]carbazoles. J Org Chem 2023; 88:3666-3677. [PMID: 36890622 DOI: 10.1021/acs.joc.2c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The iodine-catalyzed cascade reaction of ortho-formylarylketones with indoles for the synthesis of indolylbenzo[b]carbazoles is reported. The reaction is initiated in the presence of iodine by two successive nucleophilic additions of indoles with an aldehyde group of ortho-formylarylketones, and the ketone does not undergo a nucleophilic addition and only involves in the Friedel-Crafts-type cyclization. A variety of substrates are tested, and the efficiency of this reaction is demonstrated with gram-scale reactions.
Collapse
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, Taiwan, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, Taiwan, R.O.C
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei 11677, Taiwan, Taiwan, R.O.C
| |
Collapse
|
3
|
Yuan J, Jiang L, Nishimura T, Sauvé ER, Hean D, Maeda K, Wolf MO. Effect of Oxidation on the Chiroptical Properties of Sulfur-Bridged Binaphthyl Dimers. J Org Chem 2022; 87:12315-12322. [PMID: 36066048 DOI: 10.1021/acs.joc.2c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of axially chiral sulfur-bridged dimers were prepared from 1,1'-binaphthyl-2,2'-diol and subsequently oxidized to the respective sulfones. The chiroptical properties of the chiral chromophores were studied as a function of the oxidation state. Upon oxidation, an increase in quantum yields was observed for directly linked sulfur bridged binaphthyls (0.04 to 0.32), and a modest increase in dissymmetry factor was observed for diphenylsulfide-bridged binaphthyls (-8.9 × 10-4 to -1.4 × 10-3). Computational calculations were used to elucidate the changes in photophysical properties.
Collapse
Affiliation(s)
- Jennifer Yuan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lanting Jiang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ethan R Sauvé
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
4
|
Cui L, Shinjo H, Ichiki T, Deyama K, Harada T, Ishibashi K, Ehara T, Miyata K, Onda K, Hisaeda Y, Ono T. Highly Fluorescent Bipyrrole-Based Tetra-BF 2 Flag-Hinge Chromophores: Achieving Multicolor and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202204358. [PMID: 35511507 DOI: 10.1002/anie.202204358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 12/12/2022]
Abstract
This study reports the facile syntheses of tetra-boron difluoride (tetra-BF2 ) complexes, flag-hinge-like molecules that exhibit intense green-to-orange luminescence in solution and yellow-to-red emission in the solid states. Single-crystal structure analysis and density functional theory calculations suggested a bent structure of this series of compounds. The complexes also exhibited excellent optical properties, with quantum yields reaching 100 % and a large Stokes shift. These properties were attributed to the altered bending angle of the molecule in the S1 excited state. As the rotational motion was suppressed around the 2,2'-bipyrrole axis, atropisomers with axial chirality were formed, which are optically resolvable into (R) and (S)-enantiomers through a chiral column. The atropisomers thus function as circularly polarized luminescent (CPL) materials, in which the color (green, green-yellow, and yellow) can be varied by controlling the aggregation state. This rational design of multi-BF2 complexes can potentially realize novel photofunctional materials.
Collapse
Affiliation(s)
- Luxia Cui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hyuga Shinjo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takafumi Ichiki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Koichi Deyama
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takunori Harada
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita City, 870-1192, Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita City, 870-1192, Japan
| | - Takumi Ehara
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Xu X, Gunasekaran S, Renken S, Ripani L, Schollmeyer D, Kim W, Marcaccio M, Musser A, Narita A. Synthesis and Characterizations of 5,5'-Bibenzo[rst]pentaphene with Axial Chirality and Symmetry-Breaking Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200004. [PMID: 35156332 PMCID: PMC9259715 DOI: 10.1002/advs.202200004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Indexed: 05/31/2023]
Abstract
Exploration of novel biaryls consisting of two polycyclic aromatic hydrocarbon (PAH) units can be an important strategy toward further developments of organic materials with unique properties. In this study, 5,5'-bibenzo[rst]pentaphene (BBPP) with two benzo[rst]pentaphene (BPP) units is synthesized in an efficient and versatile approach, and its structure is unambiguously elucidated by X-ray crystallography. BBPP exhibits axial chirality, and the (M)- and (P)-enantiomers are resolved by chiral high-performance liquid chromatography and studied by circular dichroism spectroscopy. These enantiomers have a relatively high isomerization barrier of 43.6 kcal mol-1 calculated by density functional theory. The monomer BPP and dimer BBPP are characterized by UV-vis absorption and fluorescence spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The results indicate that both BPP and BBPP fluoresce from a formally dark S1 electronic state that is enabled by Herzberg-Teller intensity borrowing from a neighboring bright S2 state. While BPP exhibits a relatively low photoluminescence quantum yield (PLQY), BBPP exhibits a significantly enhanced PLQY due to a greater S2 intensity borrowing. Moreover, symmetry-breaking charge transfer in BBPP is demonstrated by spectroscopic investigations in solvents of different polarity. This suggests high potential for singlet fission in such π-extended biaryls through appropriate molecular design.
Collapse
Affiliation(s)
- Xiushang Xu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigami‐gunOkinawa904‐0495Japan
| | - Suman Gunasekaran
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Scott Renken
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Lorenzo Ripani
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 2Bologna40126Italy
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14Mainz55128Germany
| | - Woojae Kim
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Massimo Marcaccio
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 2Bologna40126Italy
| | - Andrew Musser
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigami‐gunOkinawa904‐0495Japan
| |
Collapse
|
6
|
Cui L, Shinjo H, Ichiki T, Deyama K, Harada T, Ishibashi K, Ehara T, Miyata K, Onda K, Hisaeda Y, Ono T. Highly Fluorescent Bipyrrole‐Based Tetra‐BF
2
Flag‐Hinge Chromophores: Achieving Multicolor and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luxia Cui
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hyuga Shinjo
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takafumi Ichiki
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Koichi Deyama
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takunori Harada
- Faculty of Science and Technology Graduate School of Engineering Oita University 700 Dannoharu Oita City 870-1192 Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology Graduate School of Engineering Oita University 700 Dannoharu Oita City 870-1192 Japan
| | - Takumi Ehara
- Department of Chemistry Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kiyoshi Miyata
- Department of Chemistry Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Onda
- Department of Chemistry Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
7
|
Shikita S, Harada T, Yasuda T. Axially chiral 1,1'-bicarbazolyls with near-ultraviolet circularly polarized luminescence. Chem Commun (Camb) 2022; 58:4849-4852. [PMID: 35347332 DOI: 10.1039/d2cc00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The facile synthesis and chiroptical properties of a new family of circularly polarized luminescence (CPL) materials, axially chiral 1,1'-bicarbazolyls (BiCz), are reported. The BiCz derivatives emitted intense near-ultraviolet photoluminescence, with a peak at ∼380 nm. The BiCz enantiomers showed mirror-image circular dichroism and CPL, with glum values on the order of 10-4 in solution.
Collapse
Affiliation(s)
- So Shikita
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takunori Harada
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. .,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Advances in circularly polarized luminescent materials based on axially chiral compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu H, Chi W, Lin ML, Dong L. Iridium( iii)-catalyzed two-fold C–H alkylation of BINOLs with allyl alcohols. Org Chem Front 2022. [DOI: 10.1039/d1qo01486b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ir(iii)-Catalyzed C–H alkylation of BINOL units has been well examined by using allyl alcohols as coupling partners.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Chi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Gharpure SJ, Hande PE, Pandey SK, Samala G. TMSOTf-Mediated Formal [4 + 2] Cycloaddition-Retro-aza-Michael Cascade of Vinylogous Carbamates for the Synthesis of Highly Fluorescent Pyridocarbazoles. J Org Chem 2021; 86:16652-16665. [PMID: 34766500 DOI: 10.1021/acs.joc.1c01927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trimethylsilyl trifluoromethanesulfonate mediated dimerization reaction of vinylogous carbamates of carbazoles gave highly fluorescent pyridocarbazoles through a Povarov-type formal [4 + 2] cycloaddition-retro-aza-Michael cascade. The developed strategy was used to access indolo pyridocarbazole and quinolizinocarbazolone in an expeditious manner. Various coupling reactions were successfully performed on synthesized pyridocarbazoles to study the effect of electronics of substitution on photophysical properties. Synthesized carbazoles possess excellent photophysical properties with high quantum yields (ΦF). Fluorescent carbazole dicarboxylic acid showed potential as a pH probe to give a linear response to pH over a very wide range (7.0-3.0) reflecting high efficiency.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surya K Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ganesh Samala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Takaishi K, Murakami S, Iwachido K, Ema T. Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule. Chem Sci 2021; 12:14570-14576. [PMID: 34881009 PMCID: PMC8580037 DOI: 10.1039/d1sc04403f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
A series of axially chiral binaphthyls and quaternaphthyls possessing two kinds of aromatic fluorophores, such as pyrenyl, perylenyl, and 4-(dimethylamino)phenyl groups, arranged alternately were synthesized by a divergent method. In the excited state, the fluorophores selectively formed a unidirectionally twisted exciplex (excited heterodimer) by a cumulative steric effect and exhibited circularly polarized luminescence (CPL). They are the first examples of a monomolecular exciplex CPL dye. This versatile method for producing exciplex CPL dyes also improved fluorescence intensity, and the CPL properties were not very sensitive to the solvent or to the temperature owing to the conformationally rigid exciplex. This systematic study allowed us to confirm that the excimer chirality rule can be applied to the exciplex dyes: left- and right-handed exciplexes with a twist angle of less than 90° exhibit (-)- and (+)-CPL, respectively.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Sho Murakami
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Kazuhiro Iwachido
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
12
|
Liu H, Lin ML, Chen YJ, Huang YH, Dong L. Rh( iii)-Catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00779c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed three-component C–H bond functionalization protocol has been successfully applied to access complex polycyclic BINOL derivatives in which the formation of intermediate amides occurred in situ from aldehydes and amines.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Jun Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Hui Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|