1
|
Wang T, Zou J, Wang K, Liu Y, Zhang S, Kong Y, Xu Z. Chemoenzymatic Synthesis of the Cyclopiane Family of Diterpenoid Natural Products. Angew Chem Int Ed Engl 2025; 64:e202419092. [PMID: 39601390 DOI: 10.1002/anie.202419092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
A three-stage chemoenzymatic synthesis of the cyclopiane family and related diterpenes is reported. Deoxyconidiogenol with a 6/5/5/5-fused tetracyclic cyclopiane skeleton was first produced by an engineered E. coli host harboring the corresponding terpene cyclase PchDS. Ten cyclopiane diterpenes were synthesized by late-stage functionalization of rings A, B and D of the cyclopiane skeleton through direct redox operations, directed C-H activation, and enzymatic hydroxylation, respectively. Skeletal diversification was achieved by taking advantage of the selective 1,2-alkyl migration of a cyclopiane cation generated chemically or enzymatically. Three cyclopiane-related skeletons, including the spiro 5/5/5/5-tetracyclic skeleton of spiroviolene, the angular 5/6/5/5-fused ring system of phomopsene, and the new linear 5/6/5/5-fused tetracyclic ring system of amycolatene, were produced either by chemical skeletal transformation from the cyclopiane skeleton, or by terpene cyclases discovered by genome mining.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiasheng Zou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Kaibiao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuanning Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Shouqi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yao Kong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Li T, Jiang S, Dai Y, Wu X, Guo H, Shi L, Sang X, Ren L, Wang J, Shi L, Zhou W, Li H, Hao HD. Total synthesis and target identification of marine cyclopiane diterpenes. Nat Commun 2024; 15:10851. [PMID: 39738095 DOI: 10.1038/s41467-024-55189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton. The stereocontrolled cyclopentenone construction is further investigated on complex settings to demonstrate its synthetic utility. Furthermore, using an alkyne-tagged conidiogenone C-derived probe, IRGM1, a master regulator of type I interferon responses, is identified as a key cellular target of conidiogenone C responsible for its anti-inflammatory activity. Preliminary mechanism of action studies shows that conidiogenone C activates IRGM1-mediate dysfunctional mitochondria autophagy to maintain mitochondria quality control of inflammatory macrophages.
Collapse
Affiliation(s)
- Tian Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yuanhao Dai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Huihui Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueli Sang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Lili Shi
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenming Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.
| | - Hong-Dong Hao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
He YH, Xiang H, Li QX, Wu YF, Jin ZX, Hu JF, Mao YC, Xiong J. Liriogerphines E-U, further unique sesquiterpene-alkaloid hybrids from the rare Chinese tulip tree. PHYTOCHEMISTRY 2024; 218:113956. [PMID: 38135206 DOI: 10.1016/j.phytochem.2023.113956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Seventeen undescribed sesquiterpene-alkaloid hybrids (liriogerphines E-U, 1-17) were isolated and identified during a further phytochemical investigation on the branches and leaves of Chinese tulip tree (Liriodendron chinense), a rare medicinal and ornamental plant endemic to China. These unique heterodimers are conjugates of germacranolide-type sesquiterpenoids with structurally diverse alkaloids [i.e., aporphine- (1-15), proaporphine- (16), and benzyltetrahydroisoquinoline-type (17)] via the formation of a C-N bond. The previously undescribed structures were elucidated by comprehensive spectroscopic data analyses and electronic circular dichroism calculations. Such a class of sesquiterpene-alkaloid hybrids presumably biosynthesized via an aza-Michael addition is quite rare from terrestrial plants. In particular, the sesquiterpene-benzyltetrahydroisoquinoline hybrid skeleton has never been reported until the present study. All the isolates were evaluated for their cytotoxic effects against a small panel of leukemia cell lines (Raji, Jeko-1, Daudi, Jurkat, MV-4-11 and HL-60), and some of them exhibited considerable activities.
Collapse
Affiliation(s)
- Yu-Hang He
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Xiang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qi-Xiu Li
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Fei Wu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ze-Xin Jin
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Yi-Cheng Mao
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
4
|
Ning Y, Xu Y, Jiao B, Lu X. Application of Gene Knockout and Heterologous Expression Strategy in Fungal Secondary Metabolites Biosynthesis. Mar Drugs 2022; 20:705. [PMID: 36355028 PMCID: PMC9699552 DOI: 10.3390/md20110705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
The in-depth study of fungal secondary metabolites (SMs) over the past few years has led to the discovery of a vast number of novel fungal SMs, some of which possess good biological activity. However, because of the limitations of the traditional natural product mining methods, the discovery of new SMs has become increasingly difficult. In recent years, with the rapid development of gene sequencing technology and bioinformatics, new breakthroughs have been made in the study of fungal SMs, and more fungal biosynthetic gene clusters of SMs have been discovered, which shows that the fungi still have a considerable potential to produce SMs. How to study these gene clusters to obtain a large number of unknown SMs has been a research hotspot. With the continuous breakthrough of molecular biology technology, gene manipulation has reached a mature stage. Methods such as gene knockout and heterologous expression techniques have been widely used in the study of fungal SM biosynthesis and have achieved good effects. In this review, the representative studies on the biosynthesis of fungal SMs by gene knockout and heterologous expression under the fungal genome mining in the last three years were summarized. The techniques and methods used in these studies were also briefly discussed. In addition, the prospect of synthetic biology in the future under this research background was proposed.
Collapse
Affiliation(s)
| | | | | | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Novel Aporphine- and Proaporphine-Clerodane Hybrids Identified from the Barks of Taiwanese Polyalthia longifolia (Sonn.) Thwaites var. pendula with Strong Anti-DENV2 Activity. Pharmaceuticals (Basel) 2022; 15:ph15101218. [PMID: 36297330 PMCID: PMC9610793 DOI: 10.3390/ph15101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid natural products produced via mixed biosynthetic pathways are unique and often surprise one with unexpected medicinal properties in addition to their fascinating structural complexity/diversity. In view of chemical structures, hybridization is a way of diversifying natural products usually through dimerization of two similar or dissimilar subcomponents through a C-C or N-C covalent linkage. Here, we report four structurally attractive diterpene-alkaloid conjugates polyalongarins A-D (1-4), clerodane-containing aporphine and proaporphine alkaloids, the first of its kind from the barks of Taiwanese Polyalthia longifolia (Sonn.) Thwaites var. pendula. In addition to conventional spectroscopic analysis, single crystal X-ray crystallography was employed to determine the chemical structures and stereo-configurations of 1. Compounds 1-4 were subsequently subjected to in vitro antiviral examination against DENV2 by evaluating the expression level of the NS2B protein in DENV2-infected Huh-7 cells. These compounds display encouraging anti-DENV2 activity with superb EC50 (2.8-6.4 μM) and CC50 values (50.4-200 μM). The inhibitory mechanism of 1-4 on NS2B was further explored drawing on in-silico molecular docking analysis. Based on calculated binding affinities and predicted interactions between the functional groups of 1-4 and the allosteric-site residues of the DENV2 NS2B-NS3 protease, our analysis concludes that the clerodane-aporphine/proaporphine-type hybrids are novel and effective DENV NS2B-NS3 protease inhibitors.
Collapse
|
6
|
Li H, Shu S, Kalaitzis JA, Shang Z, Vuong D, Crombie A, Lacey E, Piggott AM, Chooi YH. Genome Mining of Aspergillus hancockii Unearths Cryptic Polyketide Hancockinone A Featuring a Prenylated 6/6/6/5 Carbocyclic Skeleton. Org Lett 2021; 23:8789-8793. [PMID: 34747627 DOI: 10.1021/acs.orglett.1c03283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of a cryptic polyketide synthase gene cluster hkn from Aspergillus hancockii via overexpression of the gene-cluster-specific transcription factor HknR led to the discovery of a novel polycyclic metabolite, which we named hancockinone A. The compound features an unprecedented prenylated 6/6/6/5 tetracarbocyclic skeleton and shows moderate antibacterial activity. Heterologous expression, substrate feeding, and in vitro assays confirmed the role of cytochrome P450 HknE in constructing the five-membered ring in hancockinone A from the precursor neosartoricin B.
Collapse
Affiliation(s)
- Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Si Shu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - John A Kalaitzis
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Zhuo Shang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Li Y, Zhuo L, Li X, Zhu Y, Wu S, Shen T, Hu W, Li YZ, Wu C. Myxadazoles, Myxobacterium-Derived Isoxazole-Benzimidazole Hybrids with Cardiovascular Activities. Angew Chem Int Ed Engl 2021; 60:21679-21684. [PMID: 34314077 DOI: 10.1002/anie.202106275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Indexed: 12/14/2022]
Abstract
There is a continuous need for novel microbial natural products to fill the drying-up drug development pipeline. Herein, we report myxadazoles from Myxococcus sp. SDU36, a family of novel chimeric small molecules that consist of N-ribityl 5,6-dimethylbenzimidazole and a linear fatty acid chain endowed with an isoxazole ring. The experiments of genome sequencing, gene insertion mutation, isotope labelling, and precursor feeding demonstrated that the fatty acid chain was encoded by a non-canonical PKS/NRPS gene cluster, whereas the origin of N-ribityl 5,6-dimethylbenzimidazole was related to the vitamin B12 metabolism. The convergence of these two distinct biosynthetic pathways through a C-N coupling led to the unique chemical framework of myxadazoles, which is an unprecedented hybridization mode in the paradigm of natural products. Myxadazoles exhibited potent vasculogenesis promotion effect and moderate antithrombotic activity, underscoring their potential usage for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuelan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshi Dong Road, Jinan, 250103, P. R. China
| | - Yongqiang Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshi Dong Road, Jinan, 250103, P. R. China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, P. R. China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No. 72 Binhai Avenue, Qingdao, 266237, P. R. China
| |
Collapse
|
8
|
Li Y, Zhuo L, Li X, Zhu Y, Wu S, Shen T, Hu W, Li Y, Wu C. Myxadazoles, Myxobacterium‐Derived Isoxazole–Benzimidazole Hybrids with Cardiovascular Activities. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuelan Li
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Xiaobin Li
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) No. 28789 Jingshi Dong Road Jinan 250103 P. R. China
| | - Yongqiang Zhu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) No. 28789 Jingshi Dong Road Jinan 250103 P. R. China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Wei Hu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Yue‐Zhong Li
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology Institute of Microbial Technology Shandong University No. 72 Binhai Avenue Qingdao 266237 P. R. China
| |
Collapse
|