1
|
Jaiswal G, Pan SC. BBr 3-mediated dearomative spirocyclization of biaryl ynones: facile access to spiro[5.5]dienones. Org Biomol Chem 2024; 22:3602-3605. [PMID: 38629922 DOI: 10.1039/d4ob00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
This report covers boron tribromide (BBr3) mediated dearomative spirocyclization of biaryl ynones. The direct synthesis of spiro[5.5]dienones with a tri-substituted double bond is described for the first time in this paper. The scope of the reaction is broad and the spirocyclic products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Gaurav Jaiswal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| |
Collapse
|
2
|
Chaturvedi AK, Shukla RK, Volla CMR. Rh(iii)-catalyzed sp 3/sp 2-C-H heteroarylations via cascade C-H activation and cyclization. Chem Sci 2024; 15:6544-6551. [PMID: 38699273 PMCID: PMC11062110 DOI: 10.1039/d3sc06955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
The development of an efficient strategy for facile access to quinoline-based bis-heterocycles holds paramount importance in medicinal chemistry. Herein, we describe a unified approach for accessing 8-(indol-3-yl)methyl-quinolines by integrating Cp*Rh(iii)-catalyzed C(sp3)-H bond activation of 8-methylquinolines followed by nucleophilic cyclization with o-ethynylaniline derivatives. Remarkably, methoxybiaryl ynones under similar catalytic conditions delivered quinoline tethered spiro[5.5]enone scaffolds via a dearomative 6-endo-dig C-cyclization. Moreover, leveraging this method for C8(sp2)-H bond activation of quinoline-N-oxide furnished biologically relevant oxindolyl-quinolines. This reaction proceeds via C(sp2)-H bond activation, regioselective alkyne insertion, oxygen-atom-transfer (OAT) and intramolecular nucleophilic cyclization in a cascade manner. One C-C, one C-N and one C[double bond, length as m-dash]O bond were created with concomitant formation of a quaternary center.
Collapse
Affiliation(s)
- Atul K Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
3
|
Guo C, Li L, Yan Q, Chen J, Liu ZQ, Li QX, Ni SF, Li Z. Radical Three-Component Nitro Spiro-Cyclization of Unsaturated Sulfonamides/Amides to Access NO 2-Featured 4-Azaspiro[4.5]decanes. Org Lett 2024; 26:3069-3074. [PMID: 38557118 DOI: 10.1021/acs.orglett.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Free radical three-component nitration/spirocyclization of unsaturated sulfonamides/amides with tert-butyl nitrite was developed for the construction of diverse NO2-revised 4-azaspiro[4.5]decanes. This tandem system featured metal-free participation, simple operation, good selectivity/yields, and a green/low-cost O source. Meanwhile, one nitro-containing complex molecule and a scaled-up operation were performed well to test the synthetic potential of the cascade reaction. Isotopic labeling, radical inhibition experiments, and DFT analysis were carried out to gain insight into the reaction process.
Collapse
Affiliation(s)
- Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Jingyi Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Quan-Xin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province (22567635H), Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
4
|
Wang W, Yu L. Synthesis of Indenones via Persulfate Promoted Radical Alkylation/Cyclization of Biaryl Ynones with 1,4-Dihydropyridines. Molecules 2024; 29:458. [PMID: 38257370 PMCID: PMC10818456 DOI: 10.3390/molecules29020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The oxidative radical cascade cyclization of alkynes has emerged as a versatile strategy for the efficient construction of diverse structural units and complex molecules in organic chemistry. This work reports an alkyl radical initiated 5-exo-trig cyclization of biaryl ynones with 1,4-dihydropyridines to selectively synthesize indenones.
Collapse
Affiliation(s)
- Wanwan Wang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, Taizhou University, Taizhou 225300, China;
| | | |
Collapse
|
5
|
Zhou W, Li ZQ, Cheng C, Lu L, Yang R, Song XR, Luo MJ, Xiao Q. Electrochemical Arene Radical Cation Promoted Spirocyclization of Biaryl Ynones: Access to Alkoxylated Spiro[5,5]trienones. Org Lett 2023; 25:9158-9163. [PMID: 38101415 DOI: 10.1021/acs.orglett.3c03678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Herein, a novel electrochemical arene radical cation promoted dearomative spirocyclization of biaryl ynones with alcohols is described, providing a conceptually novel transformation mode for producing diverse alkoxylated spiro[5,5]trienones. The catalyst- and chemical-oxidant-free spirocyclization protocol features broad substrate scope and high functional group tolerance. Mechanistic studies reveal that the generation of arene radical cation via anodic single-electron oxidation is crucial, with sequential 6-endo-dig cyclization, dissociation of hemiketal, anodic oxidation, and nucleophilic attack of alcohols.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Zi-Qiong Li
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Chaozhihui Cheng
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Lin Lu
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
6
|
Reddy CR, Srinivasu E, Subbarao M. Seleno/Thio-functionalized ipso-Annulation of N-Propiolyl-2-arylbenzimidazole to Construct Azaspiro[5,5]undecatrienones. J Org Chem 2023; 88:16485-16496. [PMID: 37943010 DOI: 10.1021/acs.joc.3c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Till date, the ipso-cyclization of propiolamides is limited to provide azaspiro[4,5]decatrienones. Herein, we present the first example of ipso-carbocyclization, leading to azaspiro[5,5]-undecatrienones from N-propiolyl-2-arylbenzimidazoles, involving both the radical-based and electrophilic reactions. This report establishes an access to a wide range of chalcogenated (SCN/SCF3/SePh) benzimidazo-fused azaspiro[5,5]undecatrienones in good yields.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Yan Q, Chen S, Fan J, Li Z. Recent advances in radical thiocyanation cyclization or spirocyclization reactions. Org Biomol Chem 2023; 21:9112-9122. [PMID: 37986647 DOI: 10.1039/d3ob01659e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Organic thiocyanates are valuable biological moities and drug-building blocks. They can also transform effectively into thioethers, thiols, alkynyl thioethers, and thiocarbamates in synthetic chemistry. With respect to the merits of thiocyanates, many chemists and our research team have developed diverse strategies to access SCN-revised heterocycles/spirocycles via an effective radical cyclization process. Hence, this review article first describes the importance/application of thiocyanates. Subsequently, it summarizes the reaction conditions, substrate scopes, and plausible mechanism, respectively, of the excellent work stated above.
Collapse
Affiliation(s)
- Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Shiliu Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jie Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
8
|
Reddy CR, Ajaykumar U, Patil AD, Ramesh R. ipso-Cyclization of unactivated biaryl ynones leading to thio-functionalized spirocyclic enones. Org Biomol Chem 2023; 21:6379-6388. [PMID: 37492954 DOI: 10.1039/d3ob00974b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ceric ammonium nitrate (CAN)-promoted oxidative ipso-cyclization of unactivated biaryl ynones with S-centered radicals (SCN/SCF3) to access spiro[5,5]trienones has been established. This approach displayed excellent regioselectivity towards spirocyclization and tolerated a variety of functional groups. Dearomatization of hitherto unknown aryl/heteroaryl groups is also disclosed. DMSO is employed as a low-toxicity, inexpensive solvent as well as a source of oxygen.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Amol D Patil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| |
Collapse
|
9
|
Roy B, Kuila P, Sarkar D. Visible Light Promoted Brominative Dearomatization of Biaryl Ynones to Spirocycles. J Org Chem 2023; 88:10925-10945. [PMID: 37459885 DOI: 10.1021/acs.joc.3c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bromine induced spiro cyclization of biaryl ynones facilitated the synthesis of spiro[5,5]trienones suitable for extended functionality at the C(3') position. Herein, a step-economic photo-oxidative brominative carbannulation of biaryl ynones employing ammonium bromide and riboflavin tetraacetate (RFTA) has been developed. The reactivity between distal phenyl C-H activated ortho-annulation and dearomative ipso-annulation is well exemplified. The eminent features of the methodology include metal-free, external additive free, low-loading photocatalyst (0.1 mol %), and use of a simple precursor.
Collapse
Affiliation(s)
- Barnali Roy
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Puspendu Kuila
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
10
|
Reddy CR, Ajaykumar U, Kolgave DH, Ramesh R. CAN-Promoted Thiolative ipso-Annulation of Unactivated N-Benzyl Acrylamides: Access to SCN/SCF 3/SO 2Ar Containing Azaspirocycles. J Org Chem 2023. [PMID: 37192481 DOI: 10.1021/acs.joc.3c00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A variety of acrylamides holding an unactivated N-benzyl group underwent dearomative ipso-cyclization induced by sulfur-centered radicals (SCN/ SCF3/ SO2Ar) in the presence of ceric ammonium nitrate (CAN) as the oxidant to furnish azaspirocycles in good yields. This is the first report on ipso-dearomatization of N-benzyl acrylamides that proceeds without a substituent at the para-position of the aromatic ring. The developed conditions are also found to be suitable for substrates holding substituents such as F, NO2, OMe, OH, and OAc at the para-position. The reaction features water as the source of oxygen, is compatible with a variety of functional groups, and proceeds in a short time.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
11
|
Li Y, Li L, Guo C, Yan Q, Zhou H, Wang Y, Liu ZQ, Li Z. Nitro-Spirocyclization of Biaryl Ynones with tert-Butyl Nitrite: Access to NO 2-Substituted Spiro[5,5]trienones. J Org Chem 2023; 88:4854-4862. [PMID: 36947717 DOI: 10.1021/acs.joc.3c00087] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A metal/peroxide-free involved simple cascade 6-exo-trig spirocyclization of tert-butyl nitrite with biaryl ynones has been finished, which resulted in various NO2-modified spiro[5,5]trienones with good regioselectivity/yields. A variety of scaled-up experiments, reduction/epoxidation operations, and mechanistic studies were performed to verify the merits and spirocyclization process of this radical system. Finally, the structure of the spirocycles was confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Ying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, PR China
| |
Collapse
|
12
|
Zhang Y, Yang D, Lu D, Gong Y. Photoredox-Enabled Dearomatization of Protected Anilines: Access to Cyclohexadienone Imines with Contiguous Quaternary Centers. Org Lett 2023. [PMID: 36808968 DOI: 10.1021/acs.orglett.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
A photoredox-enabled alkylative dearomatization of protected anilines is reported. Under Ir catalysis and light irradiation, an N-carbamoyl-protected aniline and an α-bromocarbonyl compound could be simultaneously activated, and the two resulting radical species then recombine with each other to afford a dearomatized cyclohexadienone imine as the major product. A series of such imines with contiguous quaternary carbon centers were prepared, which can be further converted into cyclohexadienones, cyclohexadienols, and cyclohexyl amines.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Daoyi Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.,Research Institute of Huazhong University of Science and Technology in Shenzhen, 9 Yuexing 3rd Road, Shenzhen, Guangdong 518063, China
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
13
|
Azpilcueta-Nicolas CR, Meng D, Edelmann S, Lumb JP. Dearomatization of Biaryls through Polarity Mismatched Radical Spirocyclization. Angew Chem Int Ed Engl 2023; 62:e202215422. [PMID: 36454656 DOI: 10.1002/anie.202215422] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Dearomatization reactions involving radical cyclizations can facilitate the synthesis of complex polycyclic systems that find applications in medicinal chemistry and natural product synthesis. Here we employ redox-neutral photocatalysis to affect a radical spirocyclization that transforms biaryls into spirocyclic cyclohexadienones under mild reaction conditions. In a departure from previously reported methods, our work demonstrates the polarity mismatched addition of a nucleophilic radical to an electron rich arene, and allows the regioselective synthesis of 2,4- or 2,5-cyclohexadienones with broad functional group tolerance. By transforming biaryls into spirocycles, our methodology accesses underexplored three-dimensional chemical space, and provides an efficient means of creating quaternary spirocenters that we apply to the first synthesis of the cytotoxic plant metabolite denobilone A.
Collapse
Affiliation(s)
| | - Derek Meng
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Simon Edelmann
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Wei G, Zhang J, Wang H, Chen Z, Wu XF. Radical selenylative cyclization of trifluoromethyl propargyl imines for the synthesis of trifluoromethyl- and seleno-azaspiro[4,5]-tetraenones and quinolines. Org Biomol Chem 2023; 21:284-288. [PMID: 36484764 DOI: 10.1039/d2ob02033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A radical selenylative cyclization of trifluoromethyl propargyl imines with diselenides for the regiodivergent construction of diversely functionalized azaspiro[4,5]-tetraenones and quinolines has been developed, which enables dual incorporation of CF3 and Se groups into heterocycles in a one-pot reaction. When using Oxone as a green oxidant, the reaction proceeds through oxidative dearomative ipso-annulation or intramolecular ortho-annulation exhibiting good regioselectivity. The synthetic utility of this method is demonstrated by a scale-up reaction and further modification of the obtained products.
Collapse
Affiliation(s)
- Guangming Wei
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Haoyuan Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China. .,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany.
| |
Collapse
|
15
|
Chen Z, Tang W, Yang S, Yang L. Electrochemical synthesis of 3-halogenated spiro [4,5]trienones based on dearomative spirocyclization strategy. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Raji Reddy C, Kolgave DH, Ajaykumar U, Ramesh R. Copper(II)-catalyzed oxidative ipso-annulation of N-arylpropiolamides and biaryl ynones with 1,3-diketones: construction of diketoalkyl spiro-trienones. Org Biomol Chem 2022; 20:6879-6889. [PMID: 35972321 DOI: 10.1039/d2ob01282k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented copper-catalyzed ipso-annulation reaction of N-(p-methoxyaryl)propiolamides with 1,3-diketones has been developed, which enables the assembly of diketoalkylated spiro[4.5]trienones involving oxidative dearomatization in the presence of ammonium persulfate [(NH4)2S2O8] as the oxidant. This protocol was extended to biaryl ynones, efficiently affording the diketoalkylated spiro[5.5]trienones in good yields. The significance of the diketoalkyl functionality has been illustrated by further transformation into 3-pyrazoyl spiro-trienone, a structurally unique motif.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
17
|
Hu Y, Zhang S, Yu X, Feng X, Yamaguchi M, Bao M. Spirocarbocycle Synthesis from Chloromethylarenes via Transition-Metal-Catalyzed Allylative Dearomatization and Ring Closure Metathesis. J Org Chem 2022; 87:8229-8236. [PMID: 35658456 DOI: 10.1021/acs.joc.2c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy for the synthesis of spirocarbocycles by using chloromethyl arenes as starting materials is described in this paper. The palladium-catalyzed allylative dearomatization and the subsequent ruthenium-catalyzed ring closure metathesis proceeded smoothly under mild conditions to produce the corresponding spirocarbocycle products with moderate to high yields. Benzene-ring-, naphthalene-ring-, and anthracene-ring-containing substrates can be easily transformed into spirocarbocycles by using the proposed method.
Collapse
Affiliation(s)
- Yanzhao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Masahiko Yamaguchi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Department of Organic Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Chen F, Zheng Y, Yang H, Yang Q, Wu L, Zhou N. Iron‐Catalyzed Silylation and Spirocyclization of Biaryl‐Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Qing‐Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Lu‐Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
19
|
Goulart HA, Bartz RH, Peglow TJ, Barcellos AM, Cervo R, Cargnelutti R, Jacob RG, Lenardão EJ, Perin G. Synthesis of Seleno-Dibenzocycloheptenones/Spiro[5.5]Trienones by Radical Cyclization of Biaryl Ynones. J Org Chem 2022; 87:4273-4283. [PMID: 35245049 DOI: 10.1021/acs.joc.1c03112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report herein an alternative method for the synthesis of seleno-dibenzocycloheptenones and seleno-spiro[5.5]trienones through the radical cyclization of biaryl ynones in the presence of diorganyl diselenides, using Oxone as a green oxidizing agent. The reactions were conducted using acetonitrile as the solvent in a sealed tube at 100 °C. The protocol is operationally simple and scalable, exhibits high regioselectivity, and allows the synthesis of 24 dibenzocycloheptenones/spiro[5.5]trienones in yields of up to 99%, 17 of which are unpublished compounds. Additionally, synthetic transformations of the prepared compounds, such as oxidation and reduction reactions, are demonstrated.
Collapse
Affiliation(s)
- Helen A Goulart
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Thiago J Peglow
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Rodrigo Cervo
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Raquel G Jacob
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| |
Collapse
|
20
|
Visible-light-induced novel cyclization of 2-(2-(arylethynyl)benzylidene)-malononitrile derivatives with 2,6-di(tert-butyl)-4-methylphenol to bridged spirocyclic compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Liang Y, Wang S, Jia H, Chen B, Zhu F, Huo Z. Trifluoromethylthiolative spirocyclization of biaryl ynones without leaving groups on the para-position of dearomatized aryl rings. NEW J CHEM 2022. [DOI: 10.1039/d2nj01056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and efficient strategy for the oxidative spirocyclization of biaryl ynones has been developed, where nonsubstituted groups were on the para-position of the dearomatized aryl rings.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huijuan Jia
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Beibei Chen
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Feng Zhu
- Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing 210014, P. R. China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
22
|
Xia D, Shen LY, Zhang Y, Yang WC. Radical spirocyclization of biaryl ynones for the construction of NO 2-containing spiro[5.5]trienones. NEW J CHEM 2022. [DOI: 10.1039/d2nj03670c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An efficient 6-exo-trig radical cascade reaction of biaryl ynones with NaNO2 was developed to afford nitro-functionalized spiro[5.5]trienones with yields of up to 88%.
Collapse
Affiliation(s)
- Dong Xia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China
| | - Liu-Yu Shen
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
23
|
Chen Z, Zheng X, Zhou SF, Cui X. Visible Light-Promoted Selenylative Spirocyclization of Biaryl Ynones toward the Formation of Selenated Spiro[5.5]trienones. Org Biomol Chem 2022; 20:5779-5783. [DOI: 10.1039/d2ob01006b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light induced dearomative cascade cyclization of biaryl ynones with diselenides under photocatalyst and external additive-free conditions has been explored, giving a series of selenated spiro[5.5]trienones in moderate to good...
Collapse
|
24
|
Li JZ, Mei L, Yu XC, Wang LT, Cai XE, Li T, Wei WT. C-centered radical-initiated cyclization by directed C(sp 3)–H oxidative functionalization. Org Chem Front 2022. [DOI: 10.1039/d2qo01128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C(sp3)–H functionalization is attracting constant attention. This review emphasizes C-centered radicals initiated cyclization strategies by directed C(sp3)–H oxidative functionalization since 2012.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lan Mei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
25
|
Yi R, Li J, Wang D, Wei W. Radical Cascade Cyclization Involving C(sp 3)—H Functionalization of Unactivated Cycloalkanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
He FS, Su L, Yu F, Tang Z, Wu J. Construction of sulfonated spiro[5,5]trienones from sulfur dioxide via iron-catalyzed dearomative spirocyclization of biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron-catalyzed dearomative spirocyclization of biaryl ynones with sodium metabisulfite and cycloketone oxime esters is developed. By using sodium metabisulfite as the source of sulfur dioxide, this approach enables the...
Collapse
|
27
|
Mo K, Zhou X, Wu J, Zhao Y. Radical-induced denitration of N-( p-nitrophenyl)propiolamides coupled with dearomatization: access to phosphonylated/trifluoromethylated azaspiro[4.5]-trienones. Chem Commun (Camb) 2021; 58:1306-1309. [PMID: 34913445 DOI: 10.1039/d1cc05724c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A robust dearomative denitration of nitroarene derivatives induced by a radical ipso-cyclization process has been developed, delivering valuable phosphonated or trifluoromethylated azaspiro[4.5]trienones with good functional group tolerance. This represents a convenient and powerful approach to activate nitroarenes in a radical manner.
Collapse
Affiliation(s)
- Kangdong Mo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| |
Collapse
|
28
|
Xia D, Duan XF. Tandem vinyl radical Minisci-type annulation on pyridines: one-pot expeditious access to azaindenones. Chem Commun (Camb) 2021; 57:13570-13573. [PMID: 34846057 DOI: 10.1039/d1cc06204b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new regiospecific alkylative/alkenylative cascade annulation of pyridines has been achieved whilst the corresponding classic Minisci alkylative annulation failed. This protocol provides a novel and expeditious access to azaindenones and related compounds via cross-dehydrogenative coupling with the long-standing problem of C2/C4 regioselectivity of pyridines being well addressed.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
29
|
Raji Reddy C, Kolgave DH. Electrochemical Selenylative Carbannulation of Biaryl Ynones to Seleno-Dibenzocycloheptenones/Spiro[5.5]Trienones. J Org Chem 2021; 86:17071-17081. [PMID: 34808049 DOI: 10.1021/acs.joc.1c02182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electrooxidative-induced synthesis of structurally diverse seleno-dibenzocyclohepten-5-ones and seleno-spiro[5.5]trienones by selenylative carbannulation of biaryl ynones with diaryl diselenide has been developed. The switchable reactivity, intramolecular ortho-annulation or dearomative ipso-annulation, is directed by the substituent present on the ortho-aryl group of aryl-ynone. The prominent features of this method include metal-free, external chemical oxidant-free conditions, and readily accessible substrates.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Xia D, Duan XF. Iron-Catalyzed Dearomatization of Biaryl Ynones with Aldehydes via Double C-H Functionalization in Eco-Benign Solvents: Highly Atom-Economical Synthesis of Acylated Spiro[5.5]trienones. J Org Chem 2021; 86:15263-15275. [PMID: 34643395 DOI: 10.1021/acs.joc.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multiple C-H bonds of biaryl ynones render the 6-exo-trig regioselective C-H activation dearomatization to spiro[5.5]trienones challenging since the competing reactions of C-H bonds on Ar1 or the ortho-C-H bonds on Ar3 may result in 5-exo-trig cyclization to indenones or 6-exo-trig ortho-dearomatization, respectively. We here report an unprecendented dearomatization of biaryl ynones with aldehydes via double C-H functionalization where a regiospecific remote unactivated para-C-H functionalization of biaryl ynones efficiently furnishes acylated spiro[5.5]trienones. This cascade cyclization features a green catalyst and solvent and high atom- and step-economy.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
32
|
Yang WC, Zhang MM, Sun Y, Chen CY, Wang L. Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF 3: Access to SCF 3-Containing Spiro[5,5]trienones. Org Lett 2021; 23:6691-6696. [PMID: 34474567 DOI: 10.1021/acs.orglett.1c02260] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient strategy for trifluoromethylthiolation and dearomatization of activated alkynes with stable and readily available AgSCF3 has been developed. Reported herein is the unprecedented electrochemical generation of the SCF3 radical in the absence of persulfate for the synthesis of SCF3-containing spiro[5,5]trienones in good yields via a 6-exo-trig radical cyclization.
Collapse
Affiliation(s)
- Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Sun
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cai-Yun Chen
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
33
|
Zhang M, Shen L, Dong S, Li B, Meng F, Si W, Yang W. DTBP‐Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro[5.5]trienones through C(sp
3
)−H Bond Functionalization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ming‐Ming Zhang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Liu‐Yu Shen
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Sa Dong
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Bing Li
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Fei Meng
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Wei‐Jie Si
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Wen‐Chao Yang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|