1
|
Ke J, van Bonn P, Bolm C. Mechanochemical difluoromethylations of ketones. Beilstein J Org Chem 2024; 20:2799-2805. [PMID: 39530079 PMCID: PMC11552444 DOI: 10.3762/bjoc.20.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
We present a mechanochemical synthesis of difluoromethyl enol ethers. Utilizing an in situ generation of difluorocarbenes, ketones are efficiently converted to the target products under solvent-free conditions. The reactions proceed at room temperature and are complete within 90 minutes, demonstrating both efficiency and experimental simplicity.
Collapse
Affiliation(s)
- Jinbo Ke
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Pit van Bonn
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
2
|
Wu Q, Ren M, Zhou Z, Xu Y, Chen Y. Photoinduced Metal-Free Radical Addition/Cyclization of 2-Cyanoaryl Acrylamides to Prepare gem-Difluorinated Naphthyridinone Scaffolds. J Org Chem 2024; 89:10831-10843. [PMID: 38991973 DOI: 10.1021/acs.joc.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Direct construction of gem-difluorinated heterocycles represents a long-standing challenge in organic chemistry. Herein, we developed a transition-metal-free photocatalytic radical addition/cyclization of BrCF2COR with 2-cyanoaryl acrylamides to give gem-difluorinated naphthyridinone scaffolds in moderate to good yields. Furthermore, some natural products were found to be suitable in the reaction system. The easily available substrates, mild reaction conditions, simple operation, and wide functionality tolerance show practical and environmental advantages in this method.
Collapse
Affiliation(s)
- Qiaoyan Wu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Meilin Ren
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Zhike Zhou
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanli Xu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanyan Chen
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Wang S, Liu J, Song Q. Difluorocarbene Enables Access to 2,2-Difluorohydrobenzofurans and 2-Fluorobenzofurans from ortho-Vinylphenols. Org Lett 2024; 26:3744-3749. [PMID: 38687275 DOI: 10.1021/acs.orglett.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
2-Fluorobenzofurans are the backbone structures of many drug molecules and have many potential therapeutic bioactivities. Despite the potential applications in medicinal chemistry, practical and efficient synthetic methods for the construction of 2-fluorobenzofuran are very limited. Herein, we report an efficient and general method for the construction of 2-fluorobenzofurans. Contrary to the previous functionalizations of the existing backbone of benzofuran, our strategy directly constructs benzofuran scaffolds alongside the incorporation of fluorine atom on C2 position in a formal [4 + 1] cyclization from readily accessible ortho-vinylphenols and difluorocarbene. In our strategy, ClCF2H decomposes into difluorocarbene in the presence of base, which is further captured by the oxygen anion from the hydroxy group in ortho-hydroxychalcones; subsequent intramolecular Michael addition to the α, β-unsaturated system leads to 2,2-difluorohydrobenzofurans, and further fluorine elimination renders 2-fluorobenzofurans by forming one C-O bond and one C-C double bond. Of note, various complex 2,2-difluorohydrobenzofurans and 2-fluorobenzofurans could be readily accessed through our protocol via the late-stage elaborations.
Collapse
Affiliation(s)
- Yahao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuai Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jianbo Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
Pan S, Xie Q, Wang X, Huang R, Lu Y, Ni C, Hu J. Controllable Double Difluoromethylene Insertions into S-Cu Bonds: (Arylthio)tetrafluoroethylation of Aryl Iodides with TMSCF 2Br. Angew Chem Int Ed Engl 2024; 63:e202400839. [PMID: 38358953 DOI: 10.1002/anie.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
A new method of constructing "ArSCF2CF2Cu" from ArSCu and TMSCF2Br (TMS=trimethylsilyl) has been developed. The cross-coupling reactions of the obtained "ArSCF2CF2Cu" with diverse aryl iodides (Ar'I) provide an efficient access to Ar'CF2CF2SAr. Mechanistic studies demonstrate that the "ArSCF2CF2Cu" species were generated through controllable double difluoromethylene insertions into ArS-Cu bonds rather than the 1,2-addition of ArSCu to tetrafluoroethylene.
Collapse
Affiliation(s)
- Shitao Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiu Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Rumin Huang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Yuhao Lu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Mao Y, Li N, Liu J, Jiang ZX, Yang Z. TBAF-Mediated [3+1] Cycloaddition of Difluorocarbene to Access gem-Difluorinated 1,2-Diazetidine Analogues as Potent Anticancer Agents. Org Lett 2023; 25:7567-7572. [PMID: 37815920 DOI: 10.1021/acs.orglett.3c02914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The facile synthesis of gem-difluorinated 1,2-diazetidines was achieved by metal-free [3+1] annulation between C,N-cyclic azomethine imines with difluorocarbene. A library of 30 compounds benefiting from the TBAF-mediated cyclization process could be directly assembled in moderate to good yield under mild conditions. A plausible mechanism involving the difluorocarbene pathway was proposed based on carbene trapping and control experiments. Many compounds exhibited dramatic antiproliferative activity in 4T1, A549, and HeLa tumor cell lines.
Collapse
Affiliation(s)
- Yuyin Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Na Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhigang Yang
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Zhu J, Xu M, Gong B, Lin A, Gao S. ( Z)-Selective Synthesis of Bromofluoroalkenes via the TMSCF 2Br-Mediated Tandem Reaction with para-Quinone Methides. Org Lett 2023; 25:3271-3275. [PMID: 37104568 DOI: 10.1021/acs.orglett.3c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We report herein a tandem reaction of para-quinone methides with TMSCF2Br to construct bromofluoroalkenes in a Z-selective manner. While TMSCF2Br has been documented as the precursor of difluoro carbene, it exhibits another possibility in this transformation, a formal bromofluoro carbene surrogate. The alkenyl bromide unit of the products could directly engage in a variety of transformations.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Menghua Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Liu A, Ni C, Xie Q, Hu J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF 2 Br. Angew Chem Int Ed Engl 2023; 62:e202217088. [PMID: 36517973 DOI: 10.1002/anie.202217088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We have developed a new strategy for controllable single and double difluoromethylene (CF2 ) formal insertions into C-H bonds of aldehydes with nearly full selectivity under transition-metal-free conditions. The key to the success of controllable CF2 insertions lies in the well-defined formation of 2,2-difluoroenolsilyl ether and 2,2,3,3-tetrafluorocyclopropanolsilyl ether intermediates using difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). These two intermediates can react with various electrophiles including proton sources and various halogenation reagents, allowing for the access to diverse arrays of ketones containing difluoromethylene (CF2 ) and tetrafluoroethylene (CF2 CF2 ) units. The first synthesis of relatively stable 2,2,3,3-tetrafluorocyclopropanolsilyl ethers has been achieved, which offers a new platform to explore other unknown chemical space.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
8
|
Li SW, Wang G, Ye ZS. Difluorocarbene Enabled Ester Insertion/1,4-Acyl Rearrangement of 2-Acetoxylpyridines: Modular Access to gem-Difluoromethylenated 2-Pyridones. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
9
|
Happy S, Junaid M, Yadagiri D. Reactivity of quinone methides with carbenes generated from α-diazocarbonyl compounds and related compounds. Chem Commun (Camb) 2022; 59:29-42. [PMID: 36484325 DOI: 10.1039/d2cc05623b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the years, quinone methides have broadly been applied in synthesis and biological systems for synthesizing heterocyclic compounds and biologically active molecules. In this feature article, we have discussed the novel and uncovered reactivity of o-quinone methides, p-quinone methides, aza-o-quinone methides, and indolyl-2-methides with carbenes generated from α-diazocarbonyl compounds and related compounds. Two in situ-generated transient intermediates undergo cycloannulation reactions, metathesis-type reactions, 1,6-conjugate addition reactions, cyclopropanation reactions, and many other transformations to access nitrogen- and oxygen-containing heterocyclic compounds and beyond. The reactivity of quinone methides and carbenes is observed in various metal catalysts, Brønsted-acids, Lewis acids, phase transfer catalysts, additives, and visible-light-induced transformations.
Collapse
Affiliation(s)
- Sharma Happy
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
10
|
Difluorocarbene-derived rapid late-stage trifluoromethylation of 5-iodotriazoles for the synthesis of 18F-labeled radiotracers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Ma YH, He XY, Wang L, Yang QQ. PPh 3-Triggered Tandem Synthesis of 2,3-Disubstituted Benzofuran Derivatives from o-Quinone Methides with Acyl Chlorides. J Org Chem 2022; 87:11852-11856. [PMID: 35960255 DOI: 10.1021/acs.joc.2c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A PPh3-triggered tandem strategy for the efficient synthesis of valuable 2,3-disubstituted benzofuran derivatives in generally good to high yields from aryl or alkyl acyl chlorides and o-quinone methides has been developed. This method features mild reaction conditions, simple operation, and a broad substrate scope.
Collapse
Affiliation(s)
- Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China.,Hubei Three Gorges Labratory, Yichang, Hubei 443007, People's Republic of China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China.,Hubei Three Gorges Labratory, Yichang, Hubei 443007, People's Republic of China
| |
Collapse
|
12
|
Wang X, Pan S, Luo Q, Wang Q, Ni C, Hu J. Controllable Single and Double Difluoromethylene Insertions into C-Cu Bonds: Copper-Mediated Tetrafluoroethylation and Hexafluoropropylation of Aryl Iodides with TMSCF 2H and TMSCF 2Br. J Am Chem Soc 2022; 144:12202-12211. [PMID: 35786906 DOI: 10.1021/jacs.2c03104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The selective difluoromethylene insertion into a C-Cu bond is a challenging task and is currently limited to either a single CF2 insertion into CuCF3 or double CF2 insertions into CuC6F5 (or (Z)-CF3CF = CFCu). Achieving both selective single and double CF2 insertions into the same C-Cu bond is even more difficult. Herein, highly controllable single and double CF2 insertions into CuCF2H species with a TMSCF2Br reagent have been described, affording two previously unknown fluoroalkylcopper species "Cu(CF2)nCF2H" (n = 1 and 2) independently under different reaction conditions. This work represents the first example of both single and double CF2 insertions into the same C-Cu bond in a highly selective manner. The synthetic value of the obtained "Cu(CF2)nCF2H" (n = 1 and 2) species is demonstrated by their reactions with aryl iodides, halogenation agents, and cinnamyl chloride, which enables the direct transfer of HCF2CF2 and HCF2CF2CF2 moieties into organic molecules. The key to controllable fluorocarbon chain elongation from C1 to C2 and from C1 to C3 is presumably attributed to the different reactivities of "Cu(CF2)nCF2H" species (n = 0, 1, 2 and 3) and the loading of the TMSCF2Br reagent.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shitao Pan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Qinyu Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
13
|
Sap JBI, Meyer CF, Ford J, Straathof NJW, Dürr AB, Lelos MJ, Paisey SJ, Mollner TA, Hell SM, Trabanco AA, Genicot C, Am Ende CW, Paton RS, Tredwell M, Gouverneur V. [ 18F]Difluorocarbene for positron emission tomography. Nature 2022; 606:102-108. [PMID: 35344982 DOI: 10.1038/s41586-022-04669-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
The advent of total-body positron emission tomography (PET) has vastly broadened the range of research and clinical applications of this powerful molecular imaging technology1. Such possibilities have accelerated progress in fluorine-18 (18F) radiochemistry with numerous methods available to 18F-label (hetero)arenes and alkanes2. However, access to 18F-difluoromethylated molecules in high molar activity is mostly an unsolved problem, despite the indispensability of the difluoromethyl group for pharmaceutical drug discovery3. Here we report a general solution by introducing carbene chemistry to the field of nuclear imaging with a [18F]difluorocarbene reagent capable of a myriad of 18F-difluoromethylation processes. In contrast to the tens of known difluorocarbene reagents, this 18F-reagent is carefully designed for facile accessibility, high molar activity and versatility. The issue of molar activity is solved using an assay examining the likelihood of isotopic dilution on variation of the electronics of the difluorocarbene precursor. Versatility is demonstrated with multiple [18F]difluorocarbene-based reactions including O-H, S-H and N-H insertions, and cross-couplings that harness the reactivity of ubiquitous functional groups such as (thio)phenols, N-heteroarenes and aryl boronic acids that are easy to install. The impact is illustrated with the labelling of highly complex and functionalized biologically relevant molecules and radiotracers.
Collapse
Affiliation(s)
- Jeroen B I Sap
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Claudio F Meyer
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Discovery Chemistry Janssen Research and Development, Toledo, Spain
| | - Joseph Ford
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | | - Stephen J Paisey
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Cardiff University, Cardiff, UK
| | - Tim A Mollner
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Sandrine M Hell
- University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | | | | | | | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre (PETIC), School of Medicine, Cardiff University, Cardiff, UK
- School of Chemistry, Cardiff University, Cardiff, UK
| | | |
Collapse
|
14
|
Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Metal-free synthesis of gem-difluorinated heterocycles from enaminones and difluorocarbene precursors. Chem Commun (Camb) 2022; 58:3477-3480. [PMID: 35191446 DOI: 10.1039/d2cc00383j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cascade strategy to synthesise gem-difluorinated 2H-furans from reactions of BrCF2CO2Et with enaminones has been described. The reactions tolerate a wide variety of functional groups under metal-free conditions. An active aminocyclopropane is proposed to be a key intermediate through the cyclopropanation of difluorocarbene with enaminones, which further triggers a regioselective C-C bond cleavage in situ to afford the corresponding gem-difluorinated 2H-furans.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Enfu Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
15
|
Wang L, Li S, Xiao X, Xu W, Zhang P, Ma Y. A Synthetic Protocol for the Construction of Chroman‐Spiroquinazolin(thi)one Framework via a Metal‐Free, Three‐Component, Domino, Double Annulations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lingfeng Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang Zhejiang 318000 People's Republic of China
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Song Li
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang Zhejiang 318000 People's Republic of China
| | - Xuqiong Xiao
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Weiming Xu
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 310036 People's Republic of China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang Zhejiang 318000 People's Republic of China
| |
Collapse
|
16
|
Xiao Y, Jia Y, Huang J, Li X, Zhou Z, Zhang J, Jiang M, Zhou X, Jiang Z, Yang Z. Synthesis of SCF
3
‐Substituted Sulfonium Ylides from Sulfonium Salts or α‐Bromoacetic Esters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yushan Xiao
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Yimin Jia
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Jinfeng Huang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Xiangyu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Zhiwen Zhou
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovative Academy of Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 People's Republic of China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovative Academy of Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 People's Republic of China
| | - Zhong‐Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| |
Collapse
|
17
|
Chen Z, Xie X, Chen W, Luo N, Li X, Yu F, Huang J. Facile access to the 2,2-difluoro-2,3-dihydrofuran skeleton without extra additives: DMF-promoted difluorocarbene formation of ClCF 2CO 2Na. Org Biomol Chem 2022; 20:8037-8041. [DOI: 10.1039/d2ob01542k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A practical and facile difluorocarbene-triggered cycloaddition reaction of enaminones was developed, which delivered 2,2-difluoro-2,3-dihydrofurans without any extra additives.
Collapse
Affiliation(s)
- Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xin Xie
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Nianhua Luo
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xiaoning Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiuzhong Huang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
18
|
Gazzeh H, Rouatbi F, Chniti S, Askri M, Knorr M, Strohmann C, Golz C, Lamsabhi AM. Chemoselective and diastereodivergent synthesis of new spirooxindolo-pyrrolizidines and pyrrolidines stemming from unsymmetrical 1,3-bis(arylidene)tetral-2-ones: a combined experimental and theoretical study. NEW J CHEM 2022. [DOI: 10.1039/d2nj03887k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental and theoretical study of an efficient one-pot three-components cycloaddition reaction leading to pentacyclic dispiropyrrolizidin/pyrrolidinoxindoles endowed by four contiguous stereogenic centres with moderate to good yields was reported.
Collapse
Affiliation(s)
- Houda Gazzeh
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Fadwa Rouatbi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Sami Chniti
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Moheddine Askri
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Michael Knorr
- Institute UTINAM-UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Carsten Strohmann
- Technische Universität Dortmund, Anorganische Chemie Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Christopher Golz
- Georg-August-University Göttingen, Institute of Organic and Biomolecular Chemistry, Tammann-Straße 2, D-37077, Göttingen, Germany
| | - Al Mokhtar Lamsabhi
- Department of Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madri, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
19
|
Ushakov P, Ioffe S, Sukhorukov AY. Recent advances in the application of ylide-like species in [4+1]-annulation reactions: an update review. Org Chem Front 2022. [DOI: 10.1039/d2qo00698g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, advances in [4+1]‐annulation reactions involving sulfonium, sulfoxonium and ammonium ylides, as well as diazo compounds and carbenes are summarized over the last 6 years. Newly emerged methods...
Collapse
|
20
|
Liu A, Ni C, Xie Q, Hu J. TMSCF
2
Br‐Enabled Fluorination–Aminocarbonylation of Aldehydes: Modular Access to α‐Fluoroamides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
21
|
Liu A, Ni C, Xie Q, Hu J. TMSCF 2 Br-Enabled Fluorination-Aminocarbonylation of Aldehydes: Modular Access to α-Fluoroamides. Angew Chem Int Ed Engl 2021; 61:e202115467. [PMID: 34919312 DOI: 10.1002/anie.202115467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 01/03/2023]
Abstract
A protocol for the modular assembly of the α-fluoroamide motif has been developed, which provides a practical method for the efficient synthesis of structurally diverse α-fluoroamides from easily available aldehydes and tertiary amines through a three-component fluorination-aminocarbonylation process. The key to the success of this process is taking advantage of the multiple roles of the unique difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). The mechanism of the process involves the 1,2-fluorine and oxygen migrations of the in situ formed TMS-protected α-aminodifluoromethyl carbinol intermediates, which represents a new type of deoxyfluorination reaction.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
22
|
Zhang R, Li Q, Xie Q, Ni C, Hu J. Difluorocarbene-Induced Ring-Opening Difluoromethylation-Halogenation of Cyclic (Thio)Ethers with TMSCF 2 X (X=Br, Cl)*. Chemistry 2021; 27:17773-17779. [PMID: 34648215 DOI: 10.1002/chem.202103428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 01/14/2023]
Abstract
The ring-opening difluoromethylation-halogenation of cyclic (thio)ethers is reported through a simple strategy relying on carbon-chalcogen bond activation with difluorocarbene. The reaction proceeds through in situ protonation of the previously little-known difluoromethylene oxonium or sulfonium ylide intermediate followed by ring-opening with halide ion to afford halogenated acyclic difluoromethyl (thio)ethers that can then be employed for further elaboration. TMSCF2 X (X=Br, Cl) are unique reagents to achieve this synthetic purpose, which serve as both the difluorocarbene source and the halide ion source.
Collapse
Affiliation(s)
- Rongyi Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Qigang Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| |
Collapse
|