1
|
Qu HT, Zhou LS, Yang JX, Hong JH, Teng F, Xu K, Feng CT. I 2-Mediated [3 + 3] Annulation for the Construction of Indole-Pyrimidine-Pyrazole-Fused Tetracyclic Heteroarenes. J Org Chem 2024; 89:15164-15169. [PMID: 39375821 DOI: 10.1021/acs.joc.4c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
An I2-mediated annulation of 3-aminopyrazoles with indole-3-carboxaldehydes has been demonstrated for the first time. This tandem strategy allows the facile construction of indole-pyrimidine-pyrazole-fused tetracyclic heteroarenes that are otherwise inaccessible by the existing methods. These fused heterocycles exhibited enhanced antifungal activities against Valsa mali and Botryosphaeria dothidea compared with commercial Xemium fungicide.
Collapse
Affiliation(s)
- Heng-Tong Qu
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei 230012, China
| | - Long-Sheng Zhou
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei 230012, China
| | - Jia-Xin Yang
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei 230012, China
| | - Jia-Hui Hong
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei 230012, China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei 230012, China
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Cheng-Tao Feng
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei 230012, China
| |
Collapse
|
2
|
Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Chiral Osmium(II)/Salox Species Enabled Enantioselective γ-C(sp 3)-H Amidation: Integrated Experimental and Computational Validation For the Ligand Design and Reaction Development. Angew Chem Int Ed Engl 2024; 63:e202401498. [PMID: 38499469 DOI: 10.1002/anie.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.
Collapse
Affiliation(s)
- Weijie Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huiying Xu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fu-Xiaomin Liu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Kaifeng Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhi Zhou
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|
3
|
Konwar M, Das T, Das A. Cyclometalated Ruthenium Catalyst Enables Selective Oxidation of N-Substituted Tetrahydroquinolines to Lactams. Org Lett 2024; 26:1184-1189. [PMID: 38319230 DOI: 10.1021/acs.orglett.3c04263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Herein, we report an unusual α-methylene oxidation of N-substituted tetrahydroquinoline to lactams using the cyclometalated Ru(II)-complex as a catalyst. Cyclic-α-methylene C-H bonds are selectively oxidized under the reaction conditions even in the presence of α-methyl or reactive α-methylene C-H bonds. This methodology is also useful in the late-stage functionalization of pharmaceuticals. Mechanistic study demonstrates that the high-valent Ru(VI)-cis-dioxo species plays an important role in controlling selectivity.
Collapse
Affiliation(s)
- Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| | - Tapashi Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam India
| |
Collapse
|
4
|
Zeng Y, Xiao J, Xu Y, Wei F, Tian L, Gao Y, Chen Y, Hu Y. Degradation of Cyclin-Dependent Kinase 9/Cyclin T1 by Optimized Microtubule-Associated Protein 1 Light Chain 3 Beta-Recruiting Coumarin Analogs. J Med Chem 2023; 66:12877-12893. [PMID: 37671907 DOI: 10.1021/acs.jmedchem.3c00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Autophagy is an efficient and attractive protein degradation pathway in addition to the ubiquitin-proteasome system. Herein, systematic optimization of coumarin analogs linked with the CDK9 inhibitor SNS-032 is reported that may bind to cyclin-dependent kinase 9 (CDK9) and microtubule-associated protein 1 light chain 3 beta (LC3B) simultaneously, which leads to the selective autophagic degradation of targeted CDK9/cyclin T1 and is different from the PROTAC degrader THAL-SNS-032. Further mechanism studies revealed an autophagy-lysosome pathway, where the degraders possibly formed a ternary complex with CDK9 and LC3B. In addition, degrader 10 showed antitumor efficacy in vivo. Our work optimized a potent LC3B recruiter and demonstrated the feasibility of autophagy-tethering compounds (ATTECs), which could be applied for the degradation of diverse intracellular pathogenic proteins to treat related diseases.
Collapse
Affiliation(s)
- Yanping Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jian Xiao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuanxin Xu
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
| | - Fan Wei
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lina Tian
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
| | - Yinglei Gao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Wang F, Chen C, Meng Q. Comprehensive Theoretical Study of Cp*Ir III-Catalyzed Intermolecular Enantioselective Allylic C-H Amidation: Reaction Mechanism, Electronic Processes, and Regioselectivity. J Org Chem 2023; 88:2493-2504. [PMID: 36716217 DOI: 10.1021/acs.joc.2c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Density functional theory was used to elucidate the reaction mechanism of Cp*IrIII-catalyzed intermolecular regioselective C(sp3)-H amidation of alkenes with methyl dioxazolones. All substrates, intermediates, and transition states were fully optimized at the ωB97XD/6-31G(d,p) level (LANL2DZ(f) for Ir). The computational results revealed that this amidation occurred through the IrIII/IrV catalytic cycle, involving four important elementary steps: C-H bond activation, oxidative addition of methyl dioxazolone, reductive elimination, and proto-demetalation, and the first was the rate-determining step. The C-H bond activation showed good α- and branch-regioselectivity, decided by the distortion energy of 2-pentene and the interaction energy of the transition state, respectively. The oxidative addition of dioxazolone occurred in one elementary step with CO2 disassociation. The reductive elimination showed good branch-regioselectivity determined by the distorted energy of the allyl group. In the proto-demetalation, hydrogen directly transferred from the oxygen atom to the nitrogen atom. Moreover, to clarify the effect of the substituted groups, selected 12 substrates were also discussed in this text.
Collapse
Affiliation(s)
- Fen Wang
- College of Chemistry and Chemical Engineering, Taishan University, Taian271000, Shandong, People's Republic of China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| |
Collapse
|
6
|
Liang H, Wang J. Enantioselective C-H Bond Functionalization Involving Arene Ruthenium(II) Catalysis. Chemistry 2023; 29:e202202461. [PMID: 36300688 DOI: 10.1002/chem.202202461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
The p-Cymene ruthenium(II) complex is one of the most widely used catalysts in C-H activation. However, enantioselective C-H activation promoted by arene ruthenium(II) complexes has not been realized until recently. The revealed strategies include intramolecular nitrene C-H insertion, the use of chiral transient directing groups, chiral carboxylic acid, relay catalysis, and chiral arene ligands. In this minireview, these advances are summarized and discussed in the hope of spurring further developments.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Shan L, Li H, Zheng W, Wang X, Wang X, Hu Y. Tandem Synthesis of 2-Azaspiro[4.5]deca-1,6,9-trien-8-ones Based on Tf 2O-Promoted Activation of N-(2-Propyn-1-yl) Amides. J Org Chem 2023; 88:525-533. [PMID: 36522846 DOI: 10.1021/acs.joc.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structurally novel 2-azaspiro[4.5]deca-1,6,9-trien-8-ones were synthesized from N-(2-propyn-1-yl) amides and 1,3,5-trimethoxybenzenes by a tandem method consisting of a Tf2O-promoted amide activation and a TfOH-promoted Friedel-Crafts ipso-cyclization. The method offered the first example of using N-(2-propyn-1-yl) amides as substrates in both Tf2O-promoted secondary amide activation and the synthesis of azaspiro[4.5]deca-6,9-diene-8-ones.
Collapse
Affiliation(s)
- Lidong Shan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hongchen Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Weiping Zheng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xingyong Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Cao X, Zhang Z, Li J, Shi B, Li M, Zhang G, Zhang X. Rh(III)-Catalyzed Oxidative Domino C-H/N-H Annulation: Diarylureas as Arylamine Donors for the Assembly of Indolo[2,1- a]isoquinolines. J Org Chem 2022; 87:13672-13682. [PMID: 36251477 DOI: 10.1021/acs.joc.2c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and convenient Rh(III)-catalyzed double aryl C(sp2)-H bond and N-H activation and annulation reaction is reported for the synthesis of indolo[2,1-a]isoquinolines in the presence of the Cu(OAc)2 oxidant under heating conditions. Distinct from previous works with other arylamine donors, one molecule of 1,3-diarylurea can serve as a precursor of two molecules of arylamine in the reaction with diaryl-substituted alkynes.
Collapse
Affiliation(s)
- Xiyang Cao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Jingya Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Bingbing Shi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Nitrenium ion-based ipso-addition and ortho-cyclization of arenes under photo and iron dual-catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron-Catalyzed Intramolecular Arene C(sp 2 )-H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022; 61:e202204874. [PMID: 35511087 PMCID: PMC9401578 DOI: 10.1002/anie.202204874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 02/06/2023]
Abstract
In a ball mill, FeBr3 -catalyzed intramolecular amidations lead to 3,4-dihydro-2(1H)-quinolinones in good to almost quantitative yields. The reactions do not require a solvent and are easy to perform. No additional ligand is needed for the iron catalyst. Both 4-substituted aryl and β-substituted dioxazolones provide products with high selectivity. Mechanistically, an electrophilic spirocyclization followed by C-C migration explains the formation of rearranged products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yongliang Tu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Deshen Kong
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Peng Wu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ding Ma
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
11
|
Du B, Chan CM, Au CM, Yu WY. Transition Metal-Catalyzed Regioselective Direct C–H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions. Acc Chem Res 2022; 55:2123-2137. [DOI: 10.1021/acs.accounts.2c00283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bingnan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun-Ming Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
12
|
Xie D, Zhang S. Selective Reduction of Quinolinones Promoted by a SmI 2/H 2O/MeOH System. J Org Chem 2022; 87:8757-8763. [PMID: 35698844 DOI: 10.1021/acs.joc.2c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The selective reduction of quinolin-2(1H)-ones promoted by a SmI2/H2O/MeOH system is reported for the first time. The reaction is effectively carried out to afford 3,4-dihydroquinoline-2(1H)-ones under mild conditions in a one-pot fashion with good to excellent yields.
Collapse
Affiliation(s)
- Dengbing Xie
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, People's Republic of China
| | - Songlin Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Dushu Lake Campus, Suzhou 215123, People's Republic of China
| |
Collapse
|
13
|
Jeong J, Jung H, Kim D, Chang S. Multidimensional Screening Accelerates the Discovery of Rhodium Catalyst Systems for Selective Intra- and Intermolecular C–H Amidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiwoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
14
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron‐Catalyzed Intramolecular Arene C(sp
2
)−H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yongliang Tu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Deshen Kong
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Peng Wu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ding Ma
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
15
|
Zhu B, Guo W, Sun Q, Qian P, Ye L, Li L. Auxiliary‐Free Remote Dearomatizative Nitrenoid Transfer for Enantioselective Construction of Spirolactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo‐Han Zhu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 People's Republic of China
| | - Wen‐Ting Guo
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Peng‐Cheng Qian
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 People's Republic of China
| | - Long Li
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
16
|
Keum H, Jung H, Jeong J, Kim D, Chang S. Visible‐Light Induced C(sp
2
)−H Amidation with an Aryl–Alkyl σ‐Bond Relocation via Redox‐Neutral Radical–Polar Crossover. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Hoimin Jung
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jiwoo Jeong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
17
|
Keum H, Jung H, Jeong J, Kim D, Chang S. Visible-Light Induced C(sp 2 )-H Amidation with an Aryl-Alkyl σ-Bond Relocation via Redox-Neutral Radical-Polar Crossover. Angew Chem Int Ed Engl 2021; 60:25235-25240. [PMID: 34558167 DOI: 10.1002/anie.202108775] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Indexed: 01/15/2023]
Abstract
We report an approach for the intramolecular C(sp2 )-H amidation of N-acyloxyamides under photoredox conditions to produce δ-benzolactams with an aryl-alkyl σ-bond relocation. Computational studies on the designed reductive single electron transfer strategy led us to identify N-[3,5-bis(trifluoromethyl)benzoyl] group as the most effective amidyl radical precursor. Upon the formation of an azaspirocyclic radical intermediate by the selective ipso-addition with outcompeting an ortho-attack, radical-polar crossover was then rationalized to lead to the rearomative ring-expansion with preferential C-C bond migration.
Collapse
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jiwoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Oddy MJ, Kusza DA, Petersen WF. Visible-Light Mediated Metal-Free 6π-Photocyclization of N-Acrylamides: Thioxanthone Triplet Energy Transfer Enables the Synthesis of 3,4-Dihydroquinolin-2-ones. Org Lett 2021; 23:8963-8967. [PMID: 34756046 DOI: 10.1021/acs.orglett.1c03487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient thioxanthone-catalyzed triplet energy transfer process for the synthesis of 3,4-dihydroquinolin-2-ones via a 6π-photocyclization is reported. Featuring a rare example of a metal-free formal C(sp2)-H/C(sp3)-H arylation mediated by visible-light, this work hopes to inspire further interest in these small molecules as sustainable alternatives to existing transition-metal photocatalysts in related processes.
Collapse
Affiliation(s)
- Meghan J Oddy
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Daniel A Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
19
|
Biancalana L, Zanda E, Hadiji M, Zacchini S, Pratesi A, Pampaloni G, Dyson PJ, Marchetti F. Role of the (pseudo)halido ligand in ruthenium(II) p-cymene α-amino acid complexes in speciation, protein reactivity and cytotoxicity. Dalton Trans 2021; 50:15760-15777. [PMID: 34704998 DOI: 10.1039/d1dt03274g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of the dimeric complexes [RuX2(η6-p-cymene)]2 (X = Br, I, SCN) with L-proline (ProH) and trans-4-hydroxy-L-proline (HypH), in methanol in the presence of NaOH, afforded [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = Br, 1b; I, 1c; SCN, 1d) and [RuX(κ2N,O-Hyp)(η6-p-cymene)] (X = Br, 2b; I, 2c; SCN, 2d), respectively. Alternatively, the one-pot, sequential addition of the appropriate α-amino carboxylate and X- salt to [RuCl2(η6-p-cymene)]2 led to [RuX(κ2N,O-Pro)(η6-p-cymene)] (X = N3, 1e; NO2, 1f; CN 1g) and [Ru(N3)(κ2N,O-Hyp)(η6-p-cymene)] (2e). Complexes [Ru(κ3N,O,O'-O2CCH(NH2)(R)O)(η6-p-cymene)] (R = CH2, 3h; R = CHMe, 4h; R = CH2CH2, 5h) were prepared from the reaction of [RuCl2(η6-p-cymene)]2 with the appropriate α-amino acid and NaOH in refluxing isopropanol. Treatment of the L-serine (SerH2) derivative [RuCl(κ2N,O-SerH)(η6-p-cymene)] (3a) with 1,3,5-triaza-7-phosphaadamantane (PTA) in water at reflux produced [Ru(κ2N,O-Ser)(κP-PTA)(η6-p-cymene)]Cl ([3i]Cl). The products were isolated in good to excellent yields, and were characterized by elemental analysis, IR and multinuclear NMR spectroscopy. The structures of 1f and 2b-e were ascertained by X-ray diffraction studies. The behaviour of the complexes in water and cell culture medium was investigated by multinuclear NMR and UV-Vis spectroscopy, revealing a considerable influence of the monodentate ligand on the aqueous chemistry. Complexes 1d-e, 2d-e, 3h, 4h and [3i]Cl, showing substantial inertness in aqueous media, were assessed for their cytotoxicity towards A2780 and A2780cisR cancer cell lines and the noncancerous HEK 293T cell line. A selection of compounds was also investigated for Ru uptake in A2780 cells and interactions with cytochrome c as a model protein. Combined, these studies provide insights into the previously debated role of the 'leaving' ligand on the biological activity of Ru(II) arene α-amino acid complexes.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Emanuele Zanda
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Stefano Zacchini
- University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Alessandro Pratesi
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Guido Pampaloni
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Fabio Marchetti
- University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|