1
|
Le HV, Nguyen VTB, Le HX, Nguyen TT, Nguyen KD, Ho PH, Nguyen TTH. Green Synthesis of Diphenyl-Substituted Alcohols Via Radical Coupling of Aromatic Alcohols Under Transition-Metal-Free Conditions. ChemistryOpen 2024:e202400139. [PMID: 39171770 DOI: 10.1002/open.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Indexed: 08/23/2024] Open
Abstract
Alcohols are common alkylating agents and starting materials alternative to harmful alkyl halides. In this study, a simple, benign and efficient pathway was developed to synthesize 1,3-diphenylpropan-1-ols via the β-alkylation of 1-phenylethanol with benzyl alcohols. Unlike conventional borrowing hydrogen processes in which alcohols were activated by transition-metal catalyzed dehydrogenation, in this work, t-BuONa was suggested to be a dual-role reagent, namely, both base and radical initiator, for the radical coupling of aromatic alcohols. The cross-coupling reaction readily proceeded under transition metal-free conditions and an inert atmosphere, affording 1,3-diphenylpropan-1-ol with an excellent yield. A good functional group tolerance in benzyl alcohols was observed, leading to the production of various phenyl-substituted propan-1-ol derivatives in moderate-to-good yields. The mechanistic studies proposed that the reaction could involve the formation of reactive radical anions by base-mediated deprotonation and single electron transfer.
Collapse
Affiliation(s)
- Ha V Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, 740010, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, 720400, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vy T B Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, 740010, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, 720400, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Huy X Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, 740010, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, 720400, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, 740010, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, 720400, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Khoa D Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, 740010, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, 720400, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Phuoc H Ho
- Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Thuong T H Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, 740010, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, 720400, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Jana D, Roy S, Naskar S, Halder S, Kanrar G, Pramanik K. Potent pincer-zinc catalyzed homogeneous α-alkylation and Friedländer quinoline synthesis reaction of secondary alcohols/ketones with primary alcohols. Org Biomol Chem 2024; 22:6393-6408. [PMID: 39056136 DOI: 10.1039/d4ob00988f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Herein, we describe an air- and moisture-stable, homogeneous zinc catalyst stabilised using an electron deficient N^N^N pincer-type ligand. This ternary, penta-coordinated neutral molecular catalyst [Zn(N^N^N)Cl2] selectively produces α-alkylated ketone derivatives (14 examples) through a one-pot acceptorless dehydrogenative coupling (ADC) reaction between secondary and primary alcohols using the borrowing hydrogen (BH) approach in good to excellent isolated yields (up to 93%). It is worth noting that this catalyst also provides an eco-friendly route for the synthesis of quinoline derivatives (30 examples) using 2-aminobenzyl alcohols as alkylating agents via successive dehydrogenative coupling and N-annulation reactions. This cost effective, easy to synthesize and environmentally benign catalyst shows excellent stability in catalytic cycles under open-air conditions, as evident from its high turnover number (∼104), and is activated by using a catalytic amount of base under milder conditions.
Collapse
Affiliation(s)
- Debashis Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sima Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Srijita Naskar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Supriyo Halder
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Gopal Kanrar
- Department of Chemistry, St. Xavier's College (Autonomous), Kolkata-700016, India
| | | |
Collapse
|
3
|
Saha R, Panda S, Nanda A, Bagh B. Nickel-Catalyzed α-Alkylation of Arylacetonitriles with Challenging Secondary Alcohols. J Org Chem 2024; 89:6664-6676. [PMID: 36595479 DOI: 10.1021/acs.joc.2c02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nickel(II) complex 1 was utilized as a sustainable catalyst for α-alkylation of arylacetonitriles with challenging secondary alcohols. Arylacetonitriles with a wide range of functional groups were tolerated, and various cyclic and acyclic secondary alcohols were utilized to yield a large number of α-alkylated products. The plausible mechanism involves the base-promoted activation of precatalyst 1 to an active catalyst 2 (dehydrochlorinated product) which activates the O-H and C-H bonds of the secondary alcohol in a dehydrogenative pathway.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Amareshwar Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
4
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Duan YT, Yang B, Wang ZX. Pincer Nickel-Catalyzed Olefination of Alcohols with Benzylphosphine Oxides. Chem Asian J 2024:e202400255. [PMID: 38600033 DOI: 10.1002/asia.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
N,N,P-Pincer nickel complexes effectively catalyze reaction of alcohols with benzylphosphine oxides to form alkenes in good yields. The protocol suits for a wide scope of substrates and generates only E-configurated alkenes. The method also shows good compatibility of functional groups. Methoxy, methylthio, trifluoromethyl, ketal, fluoro, chloro, bromo, thienyl, and furyl groups are tolerated. The mechanism studies support that the reaction proceeds through catalytic dehydrogenation of alcohols to aldehydes or ketones followed by condensation with benzyldiphenylphosphine oxides in the presence of KOtBu.
Collapse
Affiliation(s)
- Yu-Tong Duan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| | - Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
- Frontiers Science Center for Transformative Molecules (FSCTM), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| |
Collapse
|
6
|
Samanta A, Behera P, Chaubey A, Mondal A, Pal D, Mohar K, Roy L, Srimani D. Experimental and theoretical insights for designing Zn 2+ complexes to trigger chemo-selective hetero-coupling of alcohols. Chem Commun (Camb) 2024; 60:4056-4059. [PMID: 38505958 DOI: 10.1039/d4cc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Designing well-defined Zn-complexes for sustainable dehydrogenative catalysis overcoming the difficulties associated with activating Zn2+(d10)-metal species is considered paramount goal in catalysis. Herein, we explore the plausibility of β-alkylation of secondary alcohols with primary alcohols by well-defined 3d10 Zn-complexes. Detailed organometallic and catalytic investigations, in conjunction with computational analyses, were conducted to ascertain the potential involvement of the catalyst at various stages of the catalytic process.
Collapse
Affiliation(s)
- Arup Samanta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Prativa Behera
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India.
| | - Amit Chaubey
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Kailash Mohar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India.
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
7
|
Mullick S, Ghosh A, Banerjee D. Recent advances in cross-coupling of alcohols via borrowing hydrogen catalysis. Chem Commun (Camb) 2024; 60:4002-4014. [PMID: 38451211 DOI: 10.1039/d4cc00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Application of the borrowing hydrogen strategy facilitates utilization of abundantly available alcohols for linear or branched long-chain alcohols. Selective synthesis of such alcohols is highly challenging and involves the utilization of transition metal catalysts towards the desired cross-coupled product. Herein, we have highlighted recent advances (from 2015 to 2023) towards the synthesis of higher alcohols. Major focus has been given to the development of ligands, including transition metal catalysts. Judicious catalyst design plays a key role in the alkylation process and is summarised in this review.
Collapse
Affiliation(s)
- Suteerna Mullick
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Adrija Ghosh
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
8
|
Dewangan C, Kumawat S, Bhatt T, Natte K. Homogenous nickel-catalyzed chemoselective transfer hydrogenation of functionalized nitroarenes with ammonia-borane. Chem Commun (Camb) 2023. [PMID: 37997758 DOI: 10.1039/d3cc05173k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Homogeneous Ni-catalyzed highly selective transfer hydrogenation of nitroarenes was successfully established using NH3BH3 as a hydrogen source. A broad range of functional groups were selectively reduced to provide the corresponding anilines in good to high yields. Further, pharmaceutically active compounds can be prepared that would otherwise be challenging to access.
Collapse
Affiliation(s)
- Chitrarekha Dewangan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Sandeep Kumawat
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Tarun Bhatt
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.
| |
Collapse
|
9
|
Tang J, He J, Zhao SY, Liu W. Manganese-Catalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angew Chem Int Ed Engl 2023; 62:e202215882. [PMID: 36847452 DOI: 10.1002/anie.202215882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Herein, we report a manganese-catalyzed three-component coupling of secondary alcohols, primary alcohols and methanol for the synthesis of β,β-methylated/alkylated secondary alcohols. Using our method, a series of 1-arylethanol, benzyl alcohol derivatives, and methanol undergo sequential coupling efficiently to construct assembled alcohols with high chemoselectivity in moderate to good yields. Mechanistic studies suggest that the reaction proceeds via methylation of a benzylated secondary alcohol intermediate to generate the final product.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jingxi He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Sheng-Yin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Li F, Zhao Q, Sun C, Zhu L, Xia J, Huang B. Probing natural gas components with Raman integrating sphere technology. OPTICS LETTERS 2023; 48:187-190. [PMID: 36638414 DOI: 10.1364/ol.474494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Raman spectroscopy is a powerful method of probing natural gas components, but higher sensitivity, greater miniaturization, and lower cost techniques are required. Therefore, we designed a Raman integrating sphere-enhanced spectroscopy technology in a volume of 40 × 40 × 20 cm3 based on the principle of integrating sphere reflection. This technology consists of two parts: the first is an integrating sphere model to collect scattered signals, and the second is a right-angle light-boosting system to increase the optical path of the pump light in the sample. Raman integrating sphere technology has a detection limit of 0.5 ppm in the air with an exposure time of 600 s under room temperature and ambient pressure conditions. Experiments of natural gas detection display that the detection limits of ethane, propane, n-butane, isobutane, n-pentane, and isopentane are 28, 28, 95, 28, 189, and 95 ppm, respectively. In addition, there is a linear relationship between the relative Raman intensity and the concentration of each component in natural gas, which can be used as a probe for detecting unknown natural gas components in gas wells.
Collapse
|
11
|
Jana A, Chakraborty S, Sarkar K, Maji B. Ruthenium-Catalyzed Reductive Coupling of Epoxides with Primary Alcohols via Hydrogen Transfer Catalysis. J Org Chem 2023; 88:310-318. [PMID: 36546672 DOI: 10.1021/acs.joc.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report the ruthenium-catalyzed synthesis of β-alkylated secondary alcohols via the regioselective ring-opening of epoxides with feedstock primary alcohols. The reaction utilized alcohol as the carbon source and the terminal reductant. Kinetic and labeling experiments elucidate the hydrogen transfer catalysis that operates via tandem Markovnikov selective transfer hydrogenation of terminal epoxides and hydrogen transfer-mediated cross-coupling of the resulting alcohol with primary alcohol substrates. A broad scope (40 examples including drugs/natural product derivatives) and excellent regioselectivity for a variety of substrates were shown.
Collapse
Affiliation(s)
- Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sayandip Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
12
|
Yadav V, Jagtap SG, Balaraman E, Mhaske SB. Nickel-Catalyzed Direct Synthesis of N-Substituted Indoles from Amino Alcohols and Alcohols. Org Lett 2022; 24:9054-9059. [DOI: 10.1021/acs.orglett.2c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vinita Yadav
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayali G. Jagtap
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Santosh B. Mhaske
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Demidoff FC, Caleffi GS, Figueiredo M, Costa PRR. Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of Chalcones in Water: Application to the Enantioselective Synthesis of Flavans BW683C and Tephrowatsin E. J Org Chem 2022; 87:14208-14222. [PMID: 36251770 DOI: 10.1021/acs.joc.2c01733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The oxo-tethered-Ru(II) precatalyst promoted the one-pot C═C/C═O reduction of chalcones using sodium formate as the hydrogen source in water through asymmetric transfer hydrogenation. Twenty-seven 1,3-diarylpropan-1-ols were obtained in good to excellent yields (up to 96%) and enantiomeric purities (up to 98:2). Our data suggested that the enones are first reduced to the corresponding dihydrochalcones (1,4-selectivity) and then into 1,3-diarylpropan-1-ols (C═O reduction). The stereoelectronic effects of electron-donating and electron-withdrawing groups at the ortho, meta and para positions of both aromatic rings were evaluated. The 2-OH group at the B ring was well tolerated, allowing a straightforward enantioselective synthesis of two flavans through the Mitsunobu cyclization, the antiviral (S)-BW683C and the natural flavan (S)-tephrowatsin E.
Collapse
Affiliation(s)
- Felipe C Demidoff
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Guilherme S Caleffi
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Marcella Figueiredo
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, 21.941-902 Rio de Janeiro, Brasil
| |
Collapse
|
14
|
Rajasekaran H, Retnakaran A, Priyanka Dorairaj D, Karvembu R. Palladium(II) O^S thioamide complexes catalyzed Guerbet type reaction: β-alkylation of cyclohexanol with primary alcohols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Jafarzadeh M, Sobhani SH, Gajewski K, Kianmehr E. Recent advances in C/ N-alkylation with alcohols through hydride transfer strategies. Org Biomol Chem 2022; 20:7713-7745. [PMID: 36169049 DOI: 10.1039/d2ob00706a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the most recent reports in three powerful and ever-growing fields of borrowing hydrogen, acceptorless dehydrogenative coupling, and base-mediated hydride transfer strategies; which pave the way for generating reactive intermediates via shuttling hydrogen (or hydride) between starting materials without any need for an external hydrogen source to easily construct more complex structures. There is a thorough focus on diversifying the utility of alcohols for C/N-alkylation leading to the synthesis of branched ketones, alcohols, amines, indols, and 6-membered nitrogen-containing heterocycles such as pyridines and pyrimidines, various transformations with the focus on C-C and C-N bond-forming reactions via metal-based catalysis or metal-free approaches in this context to give a global overview in this area.
Collapse
Affiliation(s)
- Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Seyed Hasan Sobhani
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | | | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| |
Collapse
|
16
|
Nandi PG, Thombare P, Prathapa SJ, Kumar A. Pincer-Cobalt-Catalyzed Guerbet-Type β-Alkylation of Alcohols in Air under Microwave Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Prasad Thombare
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Song A, Liu Y, Jin X, Su D, Li Z, Yu S, Xing L, Xu X, Wang R, Li F. Metal-ligand cooperative iridium complex catalyzed C-alkylation of oxindole and 1,3-dimethylbarbituric acid using alcohols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
18
|
Balakrishnan V, Ganguly A, Rasappan R. Interception of Nickel Hydride Species and Its Application in Multicomponent Reactions. Org Lett 2022; 24:4804-4809. [PMID: 35758604 DOI: 10.1021/acs.orglett.2c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogen borrowing strategy is an economical method for the α-functionalization of ketones. While this strategy is extremely advantageous, it does not lend itself to the synthesis of β,β-disubstituted ketones. This can be achieved, if the in situ generated metal hydride can be intercepted with a nucleophilic coupling partner. We present a multicomponent strategy for the coupling of alcohols, ketones, and boronic acids using only 1 mol % nickel catalyst and without the need for added ligands.
Collapse
Affiliation(s)
- Venkadesh Balakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
19
|
Ru-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes via P-Chiral Monophosphorous Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123898. [PMID: 35745017 PMCID: PMC9231018 DOI: 10.3390/molecules27123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Chiral alcohols are among the most widely applied in fine chemicals, pharmaceuticals and agrochemicals. Herein, the Ru-monophosphine catalyst formed in situ was found to promote an enantioselective addition of aliphatic aldehydes with arylboronic acids, delivering the chiral alcohols in excellent yields and enantioselectivities and exhibiting a broad scope of aliphatic aldehydes and arylboronic acids. The enantioselectivities are highly dependent on the monophosphorous ligands. The utility of this asymmetric synthetic method was showcased by a large-scale transformation.
Collapse
|
20
|
Direct couplings of secondary alcohols with primary alkenyl alcohols to α-alkylated ketones via a tandem transfer hydrogenation/hydrogen autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Singh VK, Donthireddy SNR, Pandey VK, Rit A. Ru II-Complexes of heteroditopic chelating NHC ligands: effective catalysts for the β-alkylation of secondary alcohols and the synthesis of 2-alkylaminoquinoline derivatives following the dehydrogenative protocol. Org Biomol Chem 2022; 20:1945-1951. [PMID: 35170618 DOI: 10.1039/d2ob00034b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RuII-Complexes of chelating heteroditopic N-heterocyclic carbene ligands featuring imidazol-2-ylidene (ImNHC) and 1,2,3-triazol-5-ylidene (tzNHC) donors connected via a CH2 spacer, 1a-c, were found to be very effective catalysts for the cross-coupling of secondary and primary alcohols with the elimination of H2O. Diverse β-alkylated secondary alcohols were thus obtained by following this method in excellent yields of up to 95% by employing a very low catalyst (1a) loading of 0.01-0.001 mol% along with the inexpensive base KOH. Mechanistically, the present protocol follows the borrowing hydrogen strategy which was established by various control experiments including deuterium labelling experiments and importantly, 1H NMR and ESI-MS analyses validated the participation of a Ru-H species in the catalytic cycle. Remarkably, the present system displayed the highest Ru-based TON of 396 000 for the β-benzylation of 1-phenylethanol with a catalyst loading of 1 ppm (0.0001 mol%). Additionally, diverse 2-alkylaminoquinoline derivatives were synthesized in a one-pot manner from 2-aminobenzyl alcohol, 2-arylacetonitrile, and various primary alcohols.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Vipin K Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
22
|
Construction of a (NNN)Ru-Incorporated Porous Organic Polymer with High Catalytic Activity for β-Alkylation of Secondary Alcohols with Primary Alcohols. Polymers (Basel) 2022; 14:polym14020231. [PMID: 35054638 PMCID: PMC8780954 DOI: 10.3390/polym14020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions.
Collapse
|
23
|
Narjinari H, Tanwar N, Kathuria L, Jasra RV, Kumar A. Guerbet-type β-alkylation of secondary alcohols catalyzed by chromium chloride and its corresponding NNN pincer complex. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00759b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Alkylation of alcohols has been efficiently accomplished using readily available 3d metal Cr under microwave conditions in air. Well-defined molecular Cr is involved with a KIE of 7.33 and insertion of α-alkylated ketone into Cr–H bond as the RDS.
Collapse
Affiliation(s)
- Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Niharika Tanwar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Reliance Industries limited, R&D Centre, Vadodara Manufacturing Division, Vadodara, 391 346, Gujarat, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Jyoti and Bhupat School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
24
|
Nandi PG, Kumar P, Kumar A. Ligand-free Guerbet-type reactions in air catalyzed by in situ formed complexes of base metal salt cobaltous chloride. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02159a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inexpensive, earth-abundant & environmentally benign CoCl2 efficiently catalyses the β-alkylation of alcohol in unprecedented yields (89%) & turnovers (8900). Mechanistic studies are indicative of in situ generated homogeneous molecular Co catalysts.
Collapse
Affiliation(s)
- Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pradhuman Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
25
|
Zhang X, Zhang J, Hao Z, Han Z, Lin J, Lu GL. Nickel Complexes Bearing N,N,O-Tridentate Salicylaldiminato Ligand: Efficient Catalysts for Imines Formation via Dehydrogenative Coupling of Primary Alcohols with Amines. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoying Zhang
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China
| | - Junhua Zhang
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China
| | - Zhiqiang Hao
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China
| | - Zhangang Han
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China
| | - Jin Lin
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
26
|
Bains AK, Kundu A, Maiti D, Adhikari D. Ligand-redox assisted nickel catalysis toward stereoselective synthesis of ( n+1)-membered cycloalkanes from 1, n-diols with methyl ketones. Chem Sci 2021; 12:14217-14223. [PMID: 34760207 PMCID: PMC8565367 DOI: 10.1039/d1sc04261k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 01/16/2023] Open
Abstract
A well-defined, bench-stable nickel catalyst is presented here, that can facilitate double alkylation of a methyl ketone to realize a wide variety of cycloalkanes. The performance of the catalyst depends on the ligand redox process comprising an azo-hydrazo couple. The source of the bis electrophile in this double alkylation is a 1,n-diol, so that (n+1)-membered cycloalkanes can be furnished in a stereoselective manner. The reaction follows a cascade of dehydrogenation/hydrogenation reactions and adopts a borrowing hydrogen (BH) method. A thorough mechanistic analysis including the interception of key radical intermediates and DFT calculations supports the ligand radical-mediated dehydrogenation and hydrogenation reactions, which is quite rare in BH chemistry. In particular, this radical-promoted hydrogenation is distinctly different from conventional hydrogenations involving a metal hydride and complementary to the ubiquitous two-electron driven dehydrogenation/hydrogenation reactions.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali SAS Nagar Punjab-140306 India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali SAS Nagar Punjab-140306 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai-400076 India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali SAS Nagar Punjab-140306 India
| |
Collapse
|
27
|
Mondal R, Chakraborty G, Guin AK, Pal S, Paul ND. Iron catalyzed metal-ligand cooperative approaches towards sustainable synthesis of quinolines and quinazolin-4(3H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Liu J, Li W, Li Y, Liu Y, Ke Z. Selective C-alkylation Between Alcohols Catalyzed by N-Heterocyclic Carbene Molybdenum. Chem Asian J 2021; 16:3124-3128. [PMID: 34529352 DOI: 10.1002/asia.202100959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The first implementation of a molybdenum complex with an easily accessible bis-N-heterocyclic carbene ligand to catalyze β-alkylation of secondary alcohols via borrowing-hydrogen (BH) strategy using alcohols as alkylating agents is reported. Remarkably high activity, excellent selectivity, and broad substrate scope compatibility with advantages of catalyst usage low to 0.5 mol%, a catalytic amount of NaOH as the base, and H2 O as the by-product are demonstrated in this green and step-economical protocol. Mechanistic studies indicate a plausible outer-sphere mechanism in which the alcohol dehydrogenation is the rate-determining step.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Weikang Li
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
29
|
Bains AK, Biswas A, Adhikari D. Nickel‐Catalyzed Selective Synthesis of α‐Alkylated Ketones via Dehydrogenative Cross‐Coupling of Primary and Secondary Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar Punjab 140306 India
| | - Ayanangshu Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar Punjab 140306 India
| | - Debashis Adhikari
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar Punjab 140306 India
| |
Collapse
|
30
|
Chakraborty G, Mondal R, Guin AK, Paul ND. Nickel catalyzed sustainable synthesis of benzazoles and purines via acceptorless dehydrogenative coupling and borrowing hydrogen approach. Org Biomol Chem 2021; 19:7217-7233. [PMID: 34612344 DOI: 10.1039/d1ob01154e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report nickel-catalyzed sustainable synthesis of a few chosen five-membered fused nitrogen heterocycles such as benzimidazole, purine, benzothiazole, and benzoxazole via acceptorless dehydrogenative functionalization of alcohols. Using a bench stable, easy to prepare, and inexpensive Ni(ii)-catalyst, [Ni(MeTAA)] (1a), featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)), a wide variety of polysubstituted benzimidazole, purine, benzothiazole, and benzoxazole derivatives were prepared via dehydrogenative coupling of alcohols with 1,2-diaminobenzene, 4,5-diaminopyrimidine, 2-aminothiphenol, and 2-aminophenol, respectively. A wide array of benzimidazoles were also prepared via a borrowing hydrogen approach involving alcohols as hydrogen donors and 2-nitroanilines as hydrogen acceptors. A few control experiments were performed to understand the reaction mechanism.
Collapse
Affiliation(s)
- Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | | | | | | |
Collapse
|
31
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
32
|
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|