1
|
Chen X, Liu D, Yang C, Shi L, Li F. Hexaazatrinaphthalene-Based Covalent Triazine Framework-Supported Rhodium(III) Complex: A Recyclable Heterogeneous Catalyst for the Reductive Amination of Ketones to Primary Amines. Inorg Chem 2023. [PMID: 37285321 DOI: 10.1021/acs.inorgchem.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of efficient and recyclable heterogeneous catalysts is an important topic. Herein, a rhodium(III) complex Cp*Rh@HATN-CTF was synthesized by the coordinative immobilization of [Cp*RhCl2]2 on a hexaazatrinaphthalene-based covalent triazine framework. In the presence of Cp*Rh@HATN-CTF (1 mo l% Rh), a series of primary amines could be obtained via the reductive amination of ketones in high yields. Moreover, catalytic activity of Cp*Rh@HATN-CTF is well maintained during six runs. The present catalytic system was also applied for the large scale preparation of a biologically active compound. It would facilitate the development of CTF-supported transition metal catalysts for sustainable chemistry.
Collapse
Affiliation(s)
- Xiaozhong Chen
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Deyun Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Chenchen Yang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Lili Shi
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Feng Li
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
2
|
Lv T, Feng J, Chen X, Luo Y, Wu Q, Zhu D, Ma Y. Desymmetric Reductive Amination of 1,3-Cyclopentadiones to Single Stereoisomer of β-Amino Ketones with an All-Carbon Quaternary Stereocenter by Engineered Amine Dehydrogenases. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Catalytic Reductive Amination of Aromatic Aldehydes on Co-Containing Composites. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The performance of a series of cobalt-based composites in catalytic amination of aromatic aldehydes by amines in the presence of hydrogen as well as hydrogenation of quinoline was studied. The composites were prepared by pyrolysis of CoII acetate, organic precursor (imidazole, 1,10-phenantroline, 1,2-diaminobenzene or melamine) deposited on aerosil (SiO2). These composites contained nanoparticles of metallic Co together with N-doped carboneous particles. Quantitative yields of the target amine in a reaction of p-methoxybenzaldehyde with n-butylamine were obtained at p(H2) = 150 bar, T = 150 °C for all composites. It was found that amination of p-methoxybenzaldehyde with n-butylamine and benzylamine at p(H2) = 100 bar, T = 100 °C led to the formation of the corresponding amines with the yields of 72–96%. In the case of diisopropylamine, amination did not occur, and p-methoxybenzyl alcohol was the sole or the major reaction product. Reaction of p-chlorobenzaldehyde with n-butylamine on the Co-containing composites at p(H2) = 100 bar, T = 100 °C resulted in the formation of N-butyl-N-p-chlorobenzylamine in 60–89% yields. Among the considered materials, the composite prepared by decomposition of CoII complex with 1,2-diaminobenzene on aerosil showed the highest yields of the target products and the best selectivity in all studied reactions.
Collapse
|
4
|
Liu Y, Wang L, Li Y, Ma B, Chen GQ, Zhang X. Highly efficient synthesis of chiral β-amino phosphine derivatives via direct asymmetric reductive amination with ammonium salts and H2. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Menche M, Klein P, Hermsen M, Konrath R, Ghosh T, Wysocki J, Ernst M, Hashmi ASK, Schäfer A, Comba P, Schaub T. Ligand backbone influence on the enantioselectivity in the ruthenium‐catalyzed direct asymmetric reductive amination of ketones with NH3/H2 using binaphthyl‐substituted phosphines. ChemCatChem 2022. [DOI: 10.1002/cctc.202200543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maximilian Menche
- BASF SE Computational Chemistry Carl-Bosch-Str. 38 67056 Ludwigshafen GERMANY
| | - Philippe Klein
- Heidelberg University Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg GERMANY
| | - Marko Hermsen
- Heidelberg University CaRLa Im Neuenheimer Feld 584 69120 Heidelberg GERMANY
| | - Robert Konrath
- BASF SE Organic Synthesis Carl-Bosch-Str. 38 67056 Ludwigshafen GERMANY
| | - Tamal Ghosh
- Heidelberg University CaRLa Im Neuenheimer Feld 584 69120 Heidelberg GERMANY
| | - Jedrzej Wysocki
- Heidelberg University CaRLa Im Neuenheimer Flel 584 69120 Heidelberg GERMANY
| | - Martin Ernst
- BASF SE Organic Synthesis Carl-Bosch-Str. 38 67056 Ludwigshafen GERMANY
| | - A. Stephen K. Hashmi
- Heidelberg University Organic Chemistry Im Neuenheimer Feld 270 69120 Heidelberg GERMANY
| | - Ansgar Schäfer
- BASF SE Computational Chemistry Carl-Bosch-Str. 38 67056 Ludwigshafen GERMANY
| | - Peter Comba
- Heidelberg University Inorganic Chemistry Im Neuenheimer Feld 270 69120 Heidelberg GERMANY
| | - Thomas Schaub
- BASF SE Synthesis and Homogeneous Catalysis Carl-Bosch-Strasse 38 67056 Ludwigshafen GERMANY
| |
Collapse
|
6
|
Hu L, Wang Y, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022; 61:e202202552. [DOI: 10.1002/anie.202202552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Le'an Hu
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Yuan‐Zheng Wang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Lei Xu
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Shenzhen Guangdong 518055 P. R. China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
- Medi-X Pingshan Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
7
|
Kong W, Liu Y, Huang C, Zhou L, Gao J, Turner NJ, Jiang Y. Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase. Angew Chem Int Ed Engl 2022; 61:e202202264. [DOI: 10.1002/anie.202202264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Weixi Kong
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Yunting Liu
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Chen Huang
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Liya Zhou
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Jing Gao
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Nicholas J. Turner
- Department of Chemistry University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Yanjun Jiang
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| |
Collapse
|
8
|
Hu L, Wang YZ, Xu L, Yin Q, Zhang X. Highly Enantioselective Synthesis of N‐Unprotected Unnatural α‐Amino Acid Derivatives by Ruthenium‐Catalyzed Direct Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Le’an Hu
- Southern University of Science and Technology Chemistry CHINA
| | - Yuan-Zheng Wang
- Southern University of Science and Technology Chemistry CHINA
| | - Lei Xu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Qin Yin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Faculty of Pharmaceutical Sciences CHINA
| | - Xumu Zhang
- Southern University of Science and Technology Chemistry 1088 Xueyuan Avenue 518055 Shenzhen CHINA
| |
Collapse
|
9
|
Kong W, Liu Y, Huang C, Zhou L, Gao J, Turner NJ, Jiang Y. Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weixi Kong
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Yunting Liu
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Chen Huang
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Liya Zhou
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Jing Gao
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| | - Nicholas J. Turner
- Department of Chemistry University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Yanjun Jiang
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrong Road, Hongqiao District Tianjin 300130 China
| |
Collapse
|
10
|
Gao Z, Liu J, Huang H, Geng H, Chang M. An Iridium Catalytic System Compatible with Inorganic and Organic Nitrogen Sources for Dual Asymmetric Reductive Amination Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhaofeng Gao
- Department of Chemistry Shaanxi Key Laboratory of Natural Products & Chemical Biology Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Jingwen Liu
- Department of Chemistry Shaanxi Key Laboratory of Natural Products & Chemical Biology Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Haizhou Huang
- Department of Chemistry Shaanxi Key Laboratory of Natural Products & Chemical Biology Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Huiling Geng
- Department of Chemistry Shaanxi Key Laboratory of Natural Products & Chemical Biology Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Mingxin Chang
- Department of Chemistry Shaanxi Key Laboratory of Natural Products & Chemical Biology Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| |
Collapse
|
11
|
Shi Y, Wang J, Yang F, Wang C, Zhang X, Chiu P, Yin Q. Direct asymmetric reductive amination of α-keto acetals: a platform for synthesizing diverse α-functionalized amines. Chem Commun (Camb) 2021; 58:513-516. [PMID: 34897338 DOI: 10.1039/d1cc06601c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report an efficient and straightforward method to synthesize enantio-enriched N-unprotected α-amino acetals via ruthenium-catalyzed direct asymmetric reductive amination. The α-amino acetal products are versatile and valuable platform molecules that can be converted to the corresponding α-amino acids, amino alcohols, and other derivatives by convenient transformations.
Collapse
Affiliation(s)
- Yongjie Shi
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jingxin Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feifan Yang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chenhan Wang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China. .,Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pauline Chiu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
12
|
Reshi NUD, Saptal VB, Beller M, Bera JK. Recent Progress in Transition-Metal-Catalyzed Asymmetric Reductive Amination. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04208] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Noor U Din Reshi
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vitthal B. Saptal
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Matthias Beller
- Leibniz-Institut fr Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Jitendra K. Bera
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
13
|
Dai Z, Pan YM, Wang SG, Zhang X, Yin Q. Direct reductive amination of ketones with ammonium salt catalysed by Cp*Ir(III) complexes bearing an amidato ligand. Org Biomol Chem 2021; 19:8934-8939. [PMID: 34636833 DOI: 10.1039/d1ob01710a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of half-sandwich Ir(III) complexes 1-6 bearing an amidato bidentate ligand were conveniently synthesized and applied to the catalytic Leuckart-Wallach reaction to produce racemic α-chiral primary amines. With 0.1 mol% of complex 1, a broad range of ketones, including aryl ketones, dialkyl ketones, cyclic ketones, α-keto acids, α-keto esters and diketones, could be transformed to their corresponding primary amines with moderate to excellent yields (40%-95%). Asymmetric transformation was also attempted with chiral Ir complexes 3-6, and 16% ee of the desired primary amine was obtained. Despite the unsatisfactory enantio-control achieved so far, the current exploration might stimulate more efforts towards the discovery of better chiral catalysts for this challenging but important transformation.
Collapse
Affiliation(s)
- Zengjin Dai
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Ying-Min Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
14
|
Gao Z, Liu J, Huang H, Geng H, Chang M. An Iridium Catalytic System Compatible with Inorganic and Organic Nitrogen Sources for Dual Asymmetric Reductive Amination Reactions. Angew Chem Int Ed Engl 2021; 60:27307-27311. [PMID: 34699113 DOI: 10.1002/anie.202112671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Indexed: 12/14/2022]
Abstract
Asymmetric reductive amination (ARA) is one of the most promising methods for the synthesis of chiral amines. Herein we report our efforts on merging two ARA reactions into a single-step transformation. Catalyzed by a complex formed from iridium and a steric hindered phosphoramidite, readily available and inexpensive aromatic ketones initially undergo the first ARA with ammonium acetate to afford primary amines, which serve as the amine sources for the second ARA, and finally provide the enantiopure C2 -symmetric secondary amine products. The developed process competently enables the successive coupling of inorganic and organic nitrogen sources with ketones in the same reaction system. The Brønsted acid additive plays multiple roles in this procedure: it accelerates the formation of imine intermediates, minimizes the inhibitory effect of N-containing species on the iridium catalyst, and reduces the primary amine side products.
Collapse
Affiliation(s)
- Zhaofeng Gao
- Department of Chemistry, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Jingwen Liu
- Department of Chemistry, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Haizhou Huang
- Department of Chemistry, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Huiling Geng
- Department of Chemistry, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Mingxin Chang
- Department of Chemistry, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
15
|
Li W, Zheng Y, Qu E, Bai J, Deng Q. β
‐Keto Amides: A Jack‐of‐All‐Trades Building Block in Organic Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Yan Zheng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Erdong Qu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Jin Bai
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Qinyue Deng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|