1
|
Rachwalski K, Madden SJ, Ritchie N, French S, Bhando T, Girgis-Gabardo A, Tu M, Gordzevich R, Ives R, Guo AB, Johnson JW, Xu Y, Kapadia SB, Magolan J, Brown ED. A screen for cell envelope stress uncovers an inhibitor of prolipoprotein diacylglyceryl transferase, Lgt, in Escherichia coli. iScience 2024; 27:110894. [PMID: 39376497 PMCID: PMC11456916 DOI: 10.1016/j.isci.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The increasing prevalence of antibiotic resistance demands the discovery of antibacterial chemical scaffolds with unique mechanisms of action. Phenotypic screening approaches, such as the use of reporters for bacterial cell stress, offer promise to identify compounds while providing strong hypotheses for follow-on mechanism of action studies. From a collection of ∼1,800 Escherichia coli GFP transcriptional reporter strains, we identified a reporter that is highly induced by cell envelope stress-pProm rcsA -GFP. After characterizing pProm rcsA -GFP induction, we assessed a collection of bioactive small molecules for reporter induction, identifying 24 compounds of interest. Spontaneous suppressors to one compound in particular, MAC-0452936, mapped to the gene encoding the essential prolipoprotein diacylglyceryl transferase, lgt. Lgt inhibition by MAC-0452936 inhibition was confirmed through genetic, phenotypic, and biochemical approaches. The oxime ester, MAC-0452936, represents a useful small molecule inhibitor of Lgt and highlights the potential of using pProm rcsA -GFP as a phenotypic screening tool.
Collapse
Affiliation(s)
- Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sean J. Madden
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicole Ritchie
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Timsy Bhando
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Adele Girgis-Gabardo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rowan Ives
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amelia B.Y. Guo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jarrod W. Johnson
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Jakob Magolan
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D. Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
2
|
Wang MM, Johnsson K. Metal-free introduction of primary sulfonamide into electron-rich aromatics. Chem Sci 2024; 15:12310-12315. [PMID: 39118614 PMCID: PMC11304520 DOI: 10.1039/d4sc03075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
We report herein a direct and practical synthesis of arylsulfonamides from electron-rich aromatic compounds by using in situ generated N-sulfonylamine as the active electrophile. Substrates include derivatives of aniline, indole, pyrrole, furan, styrene and so on. The reaction proceeds under mild conditions and tolerates many sensitive functional groups such as alkyne, acetate, the trifluoromethoxy group or acetoxymethyl ester. Applications of this method for the construction of metal ion sensors and fluorogenic dye have been demonstrated, thus highlighting the potential of this method for probe development.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Department of Chemical Biology, Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
3
|
Mandal GH, Kelley SP, Sathyamoorthi S. Enantioselective Total Syntheses of (+)-Kasugamycin and (+)-Kasuganobiosamine Highlighting a Sulfamate-Tethered Aza-Wacker Cyclization Strategy. Org Lett 2024; 26:5463-5466. [PMID: 38904476 PMCID: PMC11226349 DOI: 10.1021/acs.orglett.4c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Here, we present the first enantioselective total syntheses of the natural products (+)-kasugamycin, a potent antifungal antibiotic, and (+)-kasuganobiosamine, a compound that results from the degradation of kasugamycin. Salient features of these syntheses include a second-generation enantioselective preparation of a kasugamine derivative (efficiency much improved relative to that of our first chiral-pool effort) and our laboratory's sulfamate-tethered aza-Wacker cyclization.
Collapse
Affiliation(s)
- Gour Hari Mandal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
4
|
Joshi H, Nirpal AK, Paul D, Kelley SP, Mague JT, Sathyamoorthi S. The Development of a Sulfamate-Tethered Aza-Michael Cyclization Allows for the Preparation of (-)-Negamycin tert-Butyl Ester. J Org Chem 2024; 89:5911-5916. [PMID: 38597462 PMCID: PMC11034784 DOI: 10.1021/acs.joc.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
We present the first examples of intramolecular aza-Michael cyclizations of sulfamates and sulfamides onto pendant α,β-unsaturated esters, thioesters, amides, and nitriles. Stirring the substrate with catalytic quantities of the appropriate base delivers the product in good yield and excellent diastereoselectivity. The reactions are operationally simple, can be performed open to air, and are tolerant of a variety of important functional groups. We highlight the utility of this technology by using it in the preparation of a (-)-negamycin derivative.
Collapse
Affiliation(s)
- Harshit Joshi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Appasaheb K. Nirpal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Debobrata Paul
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
5
|
Mandal GH, Sathyamoorthi S. Sulfamate-Tethered Aza-Wacker Strategy for a Kasugamine Synthon. J Org Chem 2024; 89:793-797. [PMID: 38062940 PMCID: PMC10798055 DOI: 10.1021/acs.joc.3c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We present our preparation of a kasugamine synthon, which proceeds in 14 steps from a literature epoxide. We expect that this kasugamine derivative can be used for the total syntheses of kasugamycin, minosaminomycin, and analogue antibiotics. A key step in the synthesis is our laboratory's sulfamate-tethered aza-Wacker cyclization.
Collapse
Affiliation(s)
- Gour Hari Mandal
- University of Kansas, Department of Medicinal Chemistry, Lawrence, KS, USA (66047)
| | - Shyam Sathyamoorthi
- University of Kansas, Department of Medicinal Chemistry, Lawrence, KS, USA (66047)
| |
Collapse
|
6
|
Nagamalla S, Thomas AA, Nirpal AK, Mague JT, Sathyamoorthi S. Ring Opening of Aziridines by Pendant Sulfamates Allows for Regioselective and Stereospecific Preparation of Vicinal Diamines. J Org Chem 2023; 88:15989-16006. [PMID: 37903411 PMCID: PMC10799289 DOI: 10.1021/acs.joc.3c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The ring opening of aziridines by pendant sulfamates is a viable strategy for the rapid preparation of vicinal diamines. Our reaction is compatible with both disubstituted cis- and trans-aziridines; unsubstituted, N-alkyl, and N-aryl sulfamates engage effectively. In all cases examined, the cyclization reaction is perfectly regioselective and stereospecific. Once activated, the product oxathiazinane heterocycles can be ring opened with a diverse range of nucleophiles.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Annu Anna Thomas
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Appasaheb K. Nirpal
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
7
|
Nagamalla S, Mague JT, Sathyamoorthi S. Covalent Tethers for Precise Amino Alcohol Syntheses: Ring Opening of Epoxides by Pendant Sulfamates and Sulfamides. Org Lett 2023; 25:982-986. [PMID: 36744823 PMCID: PMC10017054 DOI: 10.1021/acs.orglett.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the development of the first ring opening of epoxides using pendant sulfamates and sulfamides. These reactions are promoted by a base and proceed under mild conditions to afford oxathiazinanes and cyclic sulfamides with excellent diastereoselectivity and regiocontrol. The reactions scale well, and the products serve as synthons for ring-opening reactions.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
8
|
Downey KT, Mo JY, Lai J, Thomson BJ, Sammis GM. Sulfur(iv) reagents for the SuFEx-based synthesis of substituted sulfamate esters. Chem Sci 2023; 14:1775-1780. [PMID: 36819869 PMCID: PMC9930924 DOI: 10.1039/d2sc05945b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Sulfur(vi) fluoride exchange chemistry has been reported to be effective at synthesizing valuable sulfur(vi) functionalities through sequential nucleophilic additions, yet oxygen-based nucleophiles are limited in this approach to phenolic derivatives. Herein, we report a new sulfur(iv) fluoride exchange strategy to access synthetically challenging substituted sulfamate esters from alkyl alcohols and amines. We also report the development of a non-gaseous, sulfur(iv) fluoride exchange reagent, N-methylimidazolium sulfinyl fluoride hexafluorophosphate (MISF). By leveraging the reactivity of the sulfur(iv) center of this novel reagent, the sequential addition of alcohols and amines to MISF followed by oxidation afforded the desired substituted sulfamates in 40-83% yields after two steps. This new strategy expands the scope of SuFEx chemistry by increasing the accessibility of underdeveloped -S(O)F intermediates for future explorations.
Collapse
Affiliation(s)
- Kathleen T. Downey
- Department of Chemistry, The University of British Columbia2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
| | - Jia Yi Mo
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Joey Lai
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Brodie J. Thomson
- Department of Chemistry, The University of British Columbia2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
| | - Glenn M. Sammis
- Department of Chemistry, The University of British Columbia2036 Main MallVancouverBritish ColumbiaV6T 1Z1Canada
| |
Collapse
|
9
|
Kukhtin-Ramirez-Reaction-Inspired Deprotection of Sulfamidates for the Synthesis of Amino Sugars. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010182. [PMID: 36615376 PMCID: PMC9822045 DOI: 10.3390/molecules28010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Herein, we present a mild strategy for deprotecting cyclic sulfamidates via the Kukhtin-Ramirez reaction to access amino sugars. The method features the removal of the sulfonic group of cyclic sulfamidates, which occurs through an N-H insertion reaction that implicates the Kukhtin-Ramirez adducts, followed by a base-promoted reductive N-S bond cleavage. The mild reaction conditions of the protocol enable the formation of amino alcohols including analogs that bear multiple functional groups.
Collapse
|
10
|
Gorelik DJ, Turner JA, Taylor MS. Catalyst-Controlled, Site-Selective Sulfamoylation of Carbohydrate Derivatives. Org Lett 2022; 24:5249-5253. [PMID: 35729742 DOI: 10.1021/acs.orglett.2c01590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods for site-selective sulfamoylation of secondary hydroxyl groups in pyranosides are described. Using a boronic acid catalyst, selective installation of a Boc-protected sulfamoyl group at the equatorial position of cis-diols in manno- and galacto-configured substrates has been achieved. Activation of trans-diol groups in gluco- and galacto-configured substrates is also possible by employing an organotin catalyst.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Oda R, Yamamoto H, Nakata K. FeCl
3
‐Catalyzed Diastereodivergent Sulfamidation of Diarylmethanol Diastereomixtures Bearing a Chiral Auxiliary Dependent on Catalyst Loading. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryoga Oda
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| | - Hiroshi Yamamoto
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| | - Kenya Nakata
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| |
Collapse
|
12
|
Reddy MK, Bhajammanavar V, Baidya M. Annulation Cascade of Sulfamate-Derived Cyclic Imines with Glycine Aldimino Esters: Synthesis of 1,3-Benzoxazepine Scaffolds. Org Lett 2021; 23:3868-3872. [PMID: 33956452 DOI: 10.1021/acs.orglett.1c01001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient (3 + 2) cycloaddition triggered annulation is reported to access 1,3-benzoxazepine frameworks. With amine base, sulfamate-derived cyclic imines readily react with glycine aldimino esters to furnish benzo-fused seven-membered heterocyclic products in good yields. The cascade reaction involves the formation of one C-C, one C-N, and one C-O bond along with the cleavage of two C-N bonds and one S-O bond. The synthesis of o-tyrosine analogues has also been accomplished from annulation products.
Collapse
Affiliation(s)
- Mallu Kesava Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|