1
|
Qin H, Liu R, Wang Z, Xu F, Li X, Shi C, Chen J, Shan W, Liu C, Xing P, Zhu J, Li X, Shi D. Photoinduced Bartoli Indole Synthesis by the Oxidative Cleavage of Alkenes with Nitro(hetero)arenes. Angew Chem Int Ed Engl 2025; 64:e202416923. [PMID: 39497520 DOI: 10.1002/anie.202416923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Given the unique charm of dipole chemistry, intercepting N-O=C dipoles precisely generated by designed processes to develop novel reactivity has become a seminal challenge. The polar fragmentation of 1,3,2-dioxazolidine species generated through the radical addition of excited nitro(hetero)arenes to alkenes represents a significantly underappreciated mechanism for generating N-O=C dipoles. Herein, we present a photoinduced Bartoli indole synthesis by the oxidative cleavage of alkenes with nitro(hetero)arenes. Various indoles and azaindoles are constructed through the multi-step spontaneous rearrangement of carbonyl imine intermediates generated by the polar fragmentation of 1,3,2-dioxazolidine species. Mechanism studies and DFT calculations support that the reaction involves radical cycloaddition, ozonolysis-type cycloreversion, intramolecular H-shift of carbonyl imines, and 3,3-sigmatropic shift of O-Alkenyl hydroxylamines, etc. The implementation of continuous- flow photochemistry, in particular, significantly enhances efficiency, thereby overcoming obstacles to the commercialization process.
Collapse
Affiliation(s)
- Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Feng Xu
- The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, P. R. China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Chao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Pan Xing
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Jiqiang Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, P. R. China
| |
Collapse
|
2
|
Tian JS, Yi-Gong, Wu ZW, Yu JS, Zhou J. H-Bond Donor-Directed Switch of Diastereoselectivity in the Enantioselective Intramolecular Aza-Henry Reaction of Ketimines. Chemistry 2024; 30:e202402488. [PMID: 39120485 DOI: 10.1002/chem.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024]
Abstract
We report an H-bond donor controlled diastereoselective switchable intramolecular aza-Henry reaction of ketimines derived from α-ketoesters and 2-(2-nitroethyl)anilines, allowing facile access to chiral tetrahydroquinolines bearing an aza-quaternary carbon stereocenter, which are privileged scaffold for medicinal researches. While newly developed cinchona alkaloid derived phosphoramide-bearing quaternary ammonium salt C2 selectively give cis-adducts in up to 20 : 1 dr and 99 % ee, the corresponding urea-bearing analogue C8 preferentially give trans-adducts in up to 20 : 1 dr and 99 % ee.
Collapse
Affiliation(s)
- Jun-Song Tian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Zhong-Wei Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Bairwa M, Verma RK, Bharadwaj KC. Domino Sequence of Ketimization and Electrophilic Amination for an Inverse Aza Intramolecular Morita-Baylis-Hillman Adduct. J Org Chem 2024; 89:14811-14817. [PMID: 39361826 DOI: 10.1021/acs.joc.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Morita-Baylis-Hillman (MBH) reaction, typically catalyzed by a Lewis base, is a popular and useful method for C-C bond formation. Unfortunately, it is limited by a slow reaction rate and has sensitivity toward steric and electronic parameters. Despite tremendous efforts, the versatility of the reaction keeps the quest open for new mechanistic and catalytic pathways. Here, we have reported a Bro̷nsted acid-catalyzed, electrophilic amination (Umpolung of imine) as a method for an inverse Aza Intramolecular MBH adduct in the form of 2-acylindole. Umpolung of imine with nitrogen acting as an electrophilic center has been achieved. Interestingly, the reaction was also shown to occur under catalyst-free conditions also. The expected products of ketimine formation, 6π electrocyclization, or quinoline formation were least/not observed. A large number of examples have demonstrated the reaction strength. β-aryl-substituted acrylate and acrylamide (cinnamates and cinnamides), which are extremely sluggish in conventional MBH chemistry, are the highlights of the developed methodology. The annulated product exhibited keto-enol tautomerism, which was proven by 1H NMR integrals. As an application, another tandem reaction in the form of Michael addition on a highly complex amine was carried out to provide spiro-annulated indole.
Collapse
Affiliation(s)
- Mansingh Bairwa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh Kumar Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
4
|
Roy S, Unnikrishnan KA, Chakraborty A, Kuniyil R, Chatterjee I. Exploiting N-Centered Umpolung Reactivity of α-Iminomalonates for the Synthesis of N-Sulfenylimines and Sulfonamides. Org Lett 2024; 26:1629-1634. [PMID: 38380999 DOI: 10.1021/acs.orglett.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
An efficient and interesting N-centered umpolung method has been disclosed to construct beneficial S-N bonds, furnishing N-sulfenylimines, which can readily be converted into the corresponding sulfonamide derivatives in a one-pot sequential operation. N-Sulfenylimines are potent intermediates in organic synthesis, whereas sulfonamides are of major molecular interest due to their rich biological activities and wide applicability in medicinal chemistry. Owing to the simple reaction conditions and setup, this protocol displays a broad and versatile substrate scope, resulting in excellent functional group tolerability toward the synthesis of both N-sulfenylimines and sulfonamides. A density functional theory (DFT) computed and experimentally supported convenient mechanism has been proposed for this unique method.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | | | - Arijit Chakraborty
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad, Kanjikode (P. O.), Palakkad, Kerala 678623, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
5
|
Yagci BB, Donmez SE, Şahin O, Türkmen YE. Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles. Beilstein J Org Chem 2023; 19:66-77. [PMID: 36741815 PMCID: PMC9874235 DOI: 10.3762/bjoc.19.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
We have developed a catalytic aza-Nazarov reaction of N-acyliminium salts generated in situ from the reaction of a variety of cyclic and acyclic imines with α,β-unsaturated acyl chlorides to afford substituted α-methylene-γ-lactam heterocycles. The reactions proceed effectively in the presence of catalytic (20 mol %) amounts of AgOTf as an anion exchange agent or hydrogen-bond donors such as squaramides and thioureas as anion-binding organocatalysts. The aza-Nazarov cyclization of 3,4-dihydroisoquinolines with α,β-unsaturated acyl chlorides gives tricyclic lactam products 7 in up to 79% yield with full diastereocontrol (dr = >99:1). The use of acyclic imines in a similar catalytic aza-Nazarov reaction with 20 mol % of AgOTf results in the formation of α-methylene-γ-lactam heterocycles 19 in up to 76% yield and with good to high diastereoselectivities (4.3:1 to 16:1). We have demonstrated the scalability of the reaction with a gram-scale example. The relative stereochemistry of the α-methylene-γ-lactam products 19 has been determined via the single-crystal X-ray analysis of lactam 19l. In order to shed light on the details of the reaction mechanism, we have performed carefully designed mechanistic studies which consist of experiments on the effect of β-silicon stabilization, the alkene geometry of the α,β-unsaturated acyl chloride reactants, and adventitious water on the success of the catalytic aza-Nazarov reaction.
Collapse
Affiliation(s)
- Bilge Banu Yagci
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Selin Ezgi Donmez
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Onur Şahin
- Department of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop 57000, Turkey
| | - Yunus Emre Türkmen
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey
- UNAM – National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
6
|
Lan W, Zhu J, Abulaiti B, Chen G, Zhang Z, Yan N, Wan JP, Zhang X, Liao L. Zinc Trifluoromethanesulfonate-Catalyzed para-Selective Amination of Free Anilines and Free Phenols with Quinoneimides. J Org Chem 2022; 87:13895-13906. [DOI: 10.1021/acs.joc.2c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqiao Lan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiatong Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Buweihailiqiemu Abulaiti
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Genyuan Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zhihao Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xiaomei Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Lihua Liao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
7
|
Lan W, Liu F, Hu J, Zhu J, Hu S, Wan JP, Liao L. Copper-Catalyzed Regiospecific Amination of Heteroarenes with Quinoneimides. J Org Chem 2022; 87:5592-5602. [PMID: 35420810 DOI: 10.1021/acs.joc.1c02873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, an unprecedented and widely applicable strategy for the regioselective C-3 amination of indoles and C-2 amination of heteroarenes (pyrrole and benzofuran) is presented in a simple, high-efficiency way. This protocol is also one of the few methods for the efficient construction of C-N bonds of quinoneimides by the 1,6-addition reaction.
Collapse
Affiliation(s)
- Weiqiao Lan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Fangyi Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jintao Hu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiatong Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Shan Hu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Lihua Liao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
8
|
Caprioglio D, Mattoteia D, Muñoz E, Taglialatela‐Scafati O, Appendino G. One‐Pot Oxidative Heterofunctionalization of Resorcinolic Cannabinoids to Non‐thiophilic Aminocannabinoquinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Diego Caprioglio
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale Largo Donegani 2 28100 Novara Italy
| | - Daiana Mattoteia
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale Largo Donegani 2 28100 Novara Italy
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba 14004 Córdoba Spain
- Departamento de Biología Celular Fisiología e Inmunología Universidad de Córdoba 14071 Córdoba Spain
- Hospital Universitario Reina Sofía 14004 Córdoba Spain
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale Largo Donegani 2 28100 Novara Italy
| |
Collapse
|