1
|
Liu W, Li W, Xu W, Wang M, Kong W. Nickel-catalyzed switchable arylative/endo-cyclization of 1,6-enynes. Nat Commun 2024; 15:2914. [PMID: 38575585 PMCID: PMC10995176 DOI: 10.1038/s41467-024-47200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Carbo- and heterocycles are frequently used as crucial scaffolds in natural products, fine chemicals, and biologically and pharmaceutically active compounds. Transition-metal-catalyzed cyclization of 1,6-enynes has emerged as a powerful strategy for constructing functionalized carbo- and heterocycles. Despite significant progress, the regioselectivity of alkyne functionalization is entirely substrate-dependent. And only exo-cyclization/cross-coupling products can be obtained, while endo-selective cyclization/cross-coupling remains elusive and still poses a formidable challenge. In this study, we disclose a nickel-catalyzed switchable arylation/cyclization of 1,6-enynes in which the nature of the ligand dictates the regioselectivity of alkyne arylation, while the electrophilic trapping reagents determine the selectivity of the cyclization mode. Specifically, using a commercially available 1,10-phenanthroline as a ligand facilitates trans-arylation/cyclization to obtain seven-membered ring products, while a 2-naphthyl-substituted bisbox ligand promotes cis-arylation/cyclization to access six-membered ring products. Diastereoselective cyclizations have also been developed for the synthesis of enantioenriched piperidines and azepanes, which are core structural elements of pharmaceuticals and natural products possessing important biological activities. Furthermore, experimental and density functional theory studies reveal that the regioselectivity of the alkyne arylation process is entirely controlled by the steric hindrance of the ligand; the reaction mechanism involves exo-cyclization followed by Dowd-Beckwith-type ring expansion to form endo-cyclization products.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Wei Li
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Wang T, Guan JX, Tan YX, Tian P. Cobalt-Catalyzed Chemo- and Stereoselective Arylative Carbocyclization of 1,6-Allenynes. Org Lett 2023; 25:5935-5940. [PMID: 37539986 DOI: 10.1021/acs.orglett.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Different from the well-investigated enynes, transition-metal-catalyzed carbocyclization reactions of allenynes are more attractive as a result of the unique structure and versatile reactivity of allenes. Herein, we report the first cobalt-catalyzed highly chemo- and stereoselective arylative carbocyclization of 1,6-allenynes with arylboronic acids, affording five-membered carbocycles and heterocycles with moderate to high yields, broad substrate scope, and wide functional group compatibility. Moreover, several mechanistic experiments were conducted to gain insight into the reaction process.
Collapse
Affiliation(s)
- Tao Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ji-Xun Guan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yun-Xuan Tan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
4
|
Dong M, Qi L, Qian J, Yu S, Tong X. Pd(0)-Catalyzed Asymmetric 7- Endo Hydroacyloxylative Cyclization of 1,6-Enyne Enabled by an Anion Ligand-Directed Strategy. J Am Chem Soc 2023; 145:1973-1981. [PMID: 36638241 DOI: 10.1021/jacs.2c12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Despite diversity in reaction mechanisms, the palladium-catalyzed cyclization of 1,6-enyne generally proceeds in a 5-exo manner. Herein, we report the development of a Pd(0)-catalyzed hydroacyloxylative cyclization of 1,6-enyne in either 7-endo-trig or 6-exo-trig fashion when paired with an appropriate dihaloacetic acid reactant, such as F2HCCO2H and Cl2HCCO2H. Using the combination of Pd2(dba)3 and a chiral phosphine ligand, the hydroacyloxylative cyclization of 1,6-enyne bearing a 1,1-disubstituted alkene moiety readily gives highly enantiopure seven-membered heterocycles while the reaction of those having a 1,2-disubstituted alkene affords six-membered rings with moderate enantioselectivity. Preliminary experimental studies suggest a reaction mechanism featuring an unusual E-to-Z vinyl-Pd(II) isomerization and alkene trans-oxypalladation, which is proven to be governed by the rationally selected carboxylate.
Collapse
Affiliation(s)
- Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China.,School of Petrochemical Engineering, Changzhou University, Gehu Road, Changzhou 213164, China
| | - Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China.,School of Petrochemical Engineering, Changzhou University, Gehu Road, Changzhou 213164, China
| |
Collapse
|
5
|
Zhu F, Yin P, Zhang P. Multicomponent Reaction: Palladium-Catalyzed Carbonylation of Aryl Halides and Alkyl Halides to Aromatic Esters. J Org Chem 2022; 88:5153-5160. [PMID: 36103718 DOI: 10.1021/acs.joc.2c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient four-component reaction has been developed that allows for the direct transformation of aryl iodides with alkyl halides into the corresponding aromatic esters and diesters via palladium-catalyzed carbonylation with water as solvent. Various esters and diesters were isolated in moderate to good yields with broad functional group tolerance.
Collapse
Affiliation(s)
- Fengxiang Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Pengpeng Yin
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
6
|
Zhang W, Vadlakonda S, Wu M, Chintareddy V, Vogeti LN, Juarez L, Muppa S, Parker C, Kellogg-Yelder D, Williams J, Polach K, Chen X, Raman K, Babu Y, Kotian P. Discovery and Optimization of Orally Bioavailable and Potent Plasma Kallikrein Inhibitors Bearing a Quaternary Carbon. Bioorg Med Chem 2022; 73:117035. [DOI: 10.1016/j.bmc.2022.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
7
|
Suri Babu U, Singam MKR, Kumar MN, Nanubolu JB, Sridhar Reddy M. Palladium-Catalyzed Carbo-Aminative Cyclization of 1,6-Enynes: Access to Napthyridinone Derivatives. Org Lett 2022; 24:1598-1603. [PMID: 35191708 DOI: 10.1021/acs.orglett.2c00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1,6-Enynes have recently stimulated enormous attention toward paving the way to unique cascade cyclizations offering complex cyclic motifs from linear substrates. We describe herein a general approach to napthyridinones via the Pd-catalyzed annulation of 1,6-enynes with 2-iodoanilines. This protocol represents a rare carbo-aminative annulative cyclization via the 6-endo-trig mode, subduing the well-documented exo-trig/dig cyclizations. The regioselective aryl palladation of alkyne followed by Heck-type intramolecular coupling before isomerization were key in realizing this cascade.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Muniganti Naveen Kumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
8
|
Abstract
AbstractCarbonylation, one of the most powerful approaches to the preparation of carbonylated compounds, has received significant attention from researchers active in various fields. Indeed, impressive progress has been made on this subject over the past few decades. Among the various types of carbonylation reactions, asymmetric carbonylation is a straightforward methodology for constructing chiral compounds. Although rhodium-catalyzed enantioselective hydroformylations have been discussed in several elegant reviews, a general review on palladium-catalyzed asymmetric carbonylations is still missing. In this review, we summarize and discuss recent achievements in palladium-catalyzed asymmetric carbonylation reactions. Notably, this review’s contents are categorized by reaction type.
Collapse
|
9
|
Qi L, Yang PJ, Ji WT, Tao GD, Yang G, Chai Z. Synthesis of chiral β-substituted γ-amino-butyric acid derivatives via enantioconvergent ring opening of racemic 2-(hetero)aryl aziridines with ketene silyl acetals. Org Chem Front 2022. [DOI: 10.1039/d2qo00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalyzed enantioconvergent ring opening of racemic 2-(hetero)aryl-N-sulfonyl aziridines with ketene silyl acetals is developed.
Collapse
Affiliation(s)
- Ling Qi
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Pei-Jun Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Middle Beijing Road, Wuhu, Anhui 241000, China
| | - Wen-Tao Ji
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Gui-De Tao
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Gaosheng Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| |
Collapse
|
10
|
Shi Z, Shen C, Dong K. Diastereoselective Alkene Hydroesterification Enabling the Synthesis of Chiral Fused Bicyclic Lactones. Chemistry 2021; 27:18039-18042. [PMID: 34734440 DOI: 10.1002/chem.202103318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 01/03/2023]
Abstract
Palladium-catalysed diastereoselective hydroesterification of alkenes assisted by the coordinative hydroxyl group in the substrate afforded a variety of chiral γ-butyrolactones bearing two stereocenters. Employing the carbonylation-lactonization products as the key intermediates, the route from the alkenes with single chiral center to chiral THF-fused bicyclic γ-lactones containing three stereocenters was developed.
Collapse
Affiliation(s)
- Zhanglin Shi
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai, 200241, China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai, 200241, China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, No. 500, Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
11
|
Frangville P, Kumar S, Gelbcke M, Van Hecke K, Meyer F. Stimuli Responsive Materials Supported by Orthogonal Hydrogen and Halogen Bonding or I···Alkene Interaction. Molecules 2021; 26:molecules26247586. [PMID: 34946668 PMCID: PMC8709106 DOI: 10.3390/molecules26247586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Smart materials represent an elegant class of (macro)-molecules endowed with the ability to react to chemical/physical changes in the environment. Herein, we prepared new photo responsive azobenzenes possessing halogen bond donor groups. The X-ray structures of two molecules highlight supramolecular organizations governed by unusual noncovalent bonds. In azo dye I-azo-NO2, the nitro group is engaged in orthogonal H···O···I halogen and hydrogen bonding, linking the units in parallel undulating chains. As far as compound I–azo–NH–MMA is concerned, a non-centrosymmetric pattern is formed due to a very rare I···π interaction involving the alkene group supplemented by hydrogen bonds. The Cambridge Structural Database contains only four structures showing the same I···CH2=C contact. For all compounds, an 19F-NMR spectroscopic analysis confirms the formation of halogen bonds in solution through a recognition process with chloride anion, and the reversible photo-responsiveness is demonstrated upon exposing a solution to UV light irradiation. Finally, the intermediate I–azo–NH2 also shows a pronounced color change due to pH variation. These azobenzenes are thereby attractive building blocks to design future multi-stimuli responsive materials for highly functional devices.
Collapse
Affiliation(s)
- Pierre Frangville
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Boulevard du Triomphe, 1050 Brussels, Belgium; (P.F.); (S.K.); (M.G.)
| | - Shiv Kumar
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Boulevard du Triomphe, 1050 Brussels, Belgium; (P.F.); (S.K.); (M.G.)
| | - Michel Gelbcke
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Boulevard du Triomphe, 1050 Brussels, Belgium; (P.F.); (S.K.); (M.G.)
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium;
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Boulevard du Triomphe, 1050 Brussels, Belgium; (P.F.); (S.K.); (M.G.)
- Correspondence: ; Tel.: +32-(0)2-650-51-96
| |
Collapse
|