1
|
Bourbon P, Vitse K, Martin-Mingot A, Geindre H, Guégan F, Michelet B, Thibaudeau S. Leveraging long-lived arenium ions in superacid for meta-selective methylation. Nat Commun 2024; 15:7435. [PMID: 39198397 PMCID: PMC11358458 DOI: 10.1038/s41467-024-49421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 09/01/2024] Open
Abstract
Electrophilic aromatic substitution is one of the most mechanistically studied reactions in organic chemistry. However, precluded by innate substituent effects, the access to certain substitution patterns remains elusive. While selective C-H alkylation of biorelevant molecules is eagerly awaited, especially for the insertion of a methyl group whose magic effect can boost lead molecules potency, one of the most obvious strategies would rely on electrophilic aromatic substitution. Yet, the historical Friedel-Crafts methylation remains to date poorly selective and limited to activated simple aromatics. Here, we report the development of a selective electrophilic methylation enabling the direct access to highly desirable 1,3-disubstituted arenes. This study demonstrates that this reaction is driven by the generation of long-lived arenium intermediates generated by protonation in superacid and can be applied to a large variety of functionalized (hetero)aromatics going from standard building blocks to active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Paul Bourbon
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Kassandra Vitse
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Agnès Martin-Mingot
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Hugo Geindre
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Frédéric Guégan
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France
| | - Bastien Michelet
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France.
| | - Sébastien Thibaudeau
- Université de Poitiers, CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 86073, Poitiers, Cedex 9, France.
| |
Collapse
|
2
|
Xia XR, Du J, Zhang YX, Jiang H, Cheng WM. Catalyst-Free Visible Light-Driven Hydrosulfonylation of Alkenes and Alkynes with Sulfonyl Chlorides in Water. CHEMSUSCHEM 2024:e202400650. [PMID: 38850152 DOI: 10.1002/cssc.202400650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/10/2024]
Abstract
A convenient and sustainable method for synthesizing sulfonyl-containing compounds through a catalyst-free aqueous-phase hydrosulfonylation of alkenes and alkynes with sulfonyl chlorides under visible light irradiation is presented. Unactivated alkenes, electron-deficient alkenes, alkyl and aryl alkynes can be hydrosulfonylated with various sulfonyl chlorides at room temperature with excellent yields and geometric selectivities by using tris(trimethylsilyl)silane as a hydrogen atom donor and silyl radical precursor to activate sulfonyl chlorides. Mechanistic studies revealed that the photolysis of tris(trimethylsilyl)silane in aqueous solution to produce silyl radical is crucial for the success of this reaction.
Collapse
Affiliation(s)
- Xi-Rui Xia
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Du
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xing Zhang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Jiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan-Min Cheng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Liu C, Ma Y, Lian R, Chen J, Yang M, Cheng J. Regulation of Photogenerated Redox Species through High Crystallinity Carbon Nitride for Improved C-S Coupling Reactions. CHEMSUSCHEM 2024; 17:e202301882. [PMID: 38242851 DOI: 10.1002/cssc.202301882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
A novel and efficient approach for the synthesis of α, β-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Yukun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Ronghong Lian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiayin Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
4
|
Chang MY, Chen KT. Synthesis of sulfonyl benzocyclononadienols. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Akyildiz V, Lafzi F, Kilic H, Saracoglu N. Solvent-controlled regioselective C(5)-H/N(1)-H bond alkylations of indolines and C(6)-H bond alkylations of 1,2,3,4-tetrahydroquinolines with para-quinone methides. Org Biomol Chem 2022; 20:3570-3588. [PMID: 35419578 DOI: 10.1039/d2ob00035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solvent-promoted and -controlled regioselective bond alkylation reactions of para-quinone methides (p-QMs) with N-H free-indoline and 1,2,3,4-tetrahydroquinoline (THQ) under metal-free conditions have been developed. In the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent, 1,6-addition alkylation reactions of p-QMs with NH-free indolines and THQs efficiently gave C5-alkylated indolines and C6-alkylated THQs. Using catalytic amounts of HFIP in DCM, the reaction of indolines and p-QMs resulted in the alkylation of indolines at the N1-position. HFIP plays two roles in the reactions: converting the indoline and THQ into bidentate nucleophiles and activating the p-QMs to achieve the 1,6-addition alkylation via hydrogen bond clusters. The indoline and THQ act as a C-nucleophile due to the H-bond clusters between HFIP and the nitrogen atom, whereas upon using catalytic amounts of HFIP, the compounds act as an N-nucleophile. All alkylation products were transformed into the corresponding indoles and quinolines via oxidation in the presence of diethyl azodicarboxylate (DEAD). Furthermore, the synthetic utilities have been showcased with both the removal of the tert-butyl groups from the C5-alkylated indole products and submission to their Suzuki coupling reactions.
Collapse
Affiliation(s)
- Volkan Akyildiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Ferruh Lafzi
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Haydar Kilic
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey.
| |
Collapse
|
6
|
Zhang X, Feng Y, Tuo Y, Zheng QZ. Metal-free sulfonylation of arenes with N-fluorobenzenesulfonimide via cleavage of S-N bonds: expeditious synthesis of diarylsulfones. Org Biomol Chem 2022; 20:768-772. [PMID: 34989387 DOI: 10.1039/d1ob02209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel metal-free sulfonylation of arenes with N-fluorobenzenesulfonimide (NFSI) toward the synthesis of diarylsulfones has been developed. The reaction represents a rare example of sulfonylation reaction using NFSI as an efficient sulfonyl donor and the first example of acid-mediated sulfonylation of unactivated arenes with NFSI via selective cleavage of S-N bonds. This protocol provides a concise approach for the construction of pharmaceutically and biologically important diarylsulfones. Applications in the functionalization of natural products (e.g., β-estradiol) and in the synthesis of a key intermediate to an inhibitor of farnesyl-protein transferase, as well as in the gram-scale synthesis of the EPAC2 antagonist, are demonstrated.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yueji Feng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yanyan Tuo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Qing-Zhong Zheng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. .,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, China
| |
Collapse
|
7
|
Artault M, Vitse K, Martin-Mingot A, Thibaudeau S. Direct Superacid-Promoted Difluoroethylation of Aromatics. Chemistry 2021; 28:e202103926. [PMID: 34845770 DOI: 10.1002/chem.202103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Under superacid conditions, aromatic amines are directly and regioselectively 1,1-difluoroethylated. Low temperature in situ NMR studies confirmed the presence of benzylic α-fluoronium and α-chloronium ions as key intermediates in the reaction. This method has a wide substrate scope and can be applied to the late-stage functionalization of natural alkaloids and active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Maxime Artault
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| | - Kassandra Vitse
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| | - Agnès Martin-Mingot
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285, Equipe "Synthèse Organique", Université de Poitiers, 4 rue Michel, Poitiers cedex 9, Brunet, 86073, France
| |
Collapse
|