1
|
Ren JW, Zhang HX, Han CS, Zhang QH, Di RD, Sun JH. Umpolung Strategy for the One-Pot Synthesis of Highly Steric Bispirooxindoles via the l-Amino Acid Ester-Promoted In Situ Reduction/Nucleophilic Addition/Cyclization Cascade Reaction. J Org Chem 2024; 89:12716-12724. [PMID: 39138971 DOI: 10.1021/acs.joc.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
On the basis of a novel umpolung strategy, an efficient l-amino acid ester-mediated in situ reduction of 2-(2-oxoindolin-3-ylidene)malononitrile and sequential nucleophilic addition/cyclization cascade reaction is reported. Various densely substituted cyclopentene bispirooxindoles and dihydrofuran bispirooxindoles with two quaternary spirocenters were constructed in high yields (≤93%) with excellent diastereoselectivities (>20:1 dr). The method has advantages of readily available starting materials, mild reaction conditions, a one-pot process, a metal-free biomimetic reducing agent, a wide substrate scope, and operational simplicity (single filtration without column chromatography).
Collapse
Affiliation(s)
- Ji-Wei Ren
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong 271000, P. R. China
| | - Huai-Xin Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong 271000, P. R. China
| | - Cheng-Shuai Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong 271000, P. R. China
| | - Qing-Hao Zhang
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong 271000, P. R. China
| | - Rui-Dong Di
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong 271000, P. R. China
| | - Jing-Hui Sun
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong 271000, P. R. China
| |
Collapse
|
2
|
Savekar AT, Gaikwad RA, Waghmode SB. Metal-Free Regioselective Oxa-Michael Approach to Access Spirooxindole-Fused Tetrahydrofuran/Tetrahydropyran through [3 + 2]/ [4 + 2] Spirocyclization of Methyleneindolinones with Haloalcohols. J Org Chem 2024; 89:9389-9404. [PMID: 38913823 DOI: 10.1021/acs.joc.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An efficient one-pot metal-free, base-catalyzed method has been developed for the regioselective [3 + 2]/[4 + 2] annulation reactions of electrophilic methyleneindolinones with haloalcohols to furnish spirooxindole derivatives under mild reaction conditions. This reaction afforded the corresponding products with two contiguous stereocenters including a quaternary center in good to excellent yield (up to 95%) with moderate to good diastereoselectivities (up to 12.5:1 dr) with complete regioselectivity.
Collapse
Affiliation(s)
- Amol T Savekar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Ramesh A Gaikwad
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
3
|
Sankara CS, Namboothiri INN. Hauser-Kraus Annulation Initiated Multi-Cascade Reactions for Facile Access to Functionalized and Fused Oxazepines, Carbazoles and Phenanthridinediones. Chemistry 2024; 30:e202303517. [PMID: 37946675 DOI: 10.1002/chem.202303517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The Hauser-Kraus (H-K) annulation of N-unsubstituted 3-olefinic oxindoles with 3-nucleophilic phthalides triggers a cascade of ring expansion and ring contraction reactions through several regioselective steps in one pot. While oxazepines were isolated in the presence of stoichiometric amounts of base at room temperature, carbazoles and phenanthridinediones were the products in the presence of excess base and microwave irradiation. Mechanistic studies guided by stepwise reactions and control experiments revealed that the isolable oxazepine intermediate, formed via ring expansion of the H-K adduct, is the key precursor to carbazole and phenanthridinedione via decarboxylative regioselective cyclizations.
Collapse
|
4
|
Lokesh K, Kumarswamyreddy N, Kesavan V. Diastereoselective Construction of Tetrahydro-Dispiro[indolinone-3,2'-pyran-5',4″-pyrazolone] Scaffolds via an Oxa-Michael Cascade [4 + 2] Annulation Reaction. J Org Chem 2023; 88:15540-15550. [PMID: 36111800 DOI: 10.1021/acs.joc.2c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A straightforward metal-free oxa-Michael cascade [4 + 2] annulation reaction was established between isatin-derived Morita-Baylis-Hillman (Is-MBH) alcohols with alkylidene pyrazolones to access structural diverse tetrahydro-dispiro[indolinone-3,2'-pyran-5',4″-pyrazolone] scaffolds bearing two tertiary and two quaternary stereocenters. The Is-MBH alcohol was utilized as an oxa-Michael donor for the first time as a new approach in highly atom-economical transformations. This method offered a wide range of bioinspired novel tetrahydro-dispirooxindole-pyran-pyrazolone derivatives in excellent yields (up to 96%) and diastereoselectivities (up to >20:1) in a shorter reaction time (15 min).
Collapse
Affiliation(s)
- Kanduru Lokesh
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
- Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Nandarapu Kumarswamyreddy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Venkitasamy Kesavan
- Chemical Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai 600036, India
| |
Collapse
|
5
|
Vinylogous Michael addition of nitroalkylideneoxindoles to isatylidene-malononitriles in the regio- and diastereoselective synthesis of dispirocyclopentylbisoxindoles. J CHEM SCI 2023. [DOI: 10.1007/s12039-022-02122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Pramanik S, Mukhopadhyay C. Tosylhydrazine-promoted self-conjugate reduction–Michael/aldol reaction of 3-phenacylideneoxindoles towards dispirocyclopentanebisoxindole derivatives. Beilstein J Org Chem 2022; 18:469-478. [PMID: 35558650 PMCID: PMC9062653 DOI: 10.3762/bjoc.18.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
An efficient tosylhydrazine-mediated conjugate reduction of 3-phenacylideneoxindole and sequential Michael/intramolecular aldol reaction is reported under base-catalyzed conditions towards the formation of densely substituted dispirocyclopentanebisoxindole derivatives. The reaction proceeded in a diastereoselective manner to afford four chiral stereocenters. The method also has advantages of wide substrate scope, readily available starting materials and operational simplicity through one pot reaction.
Collapse
Affiliation(s)
- Sayan Pramanik
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
7
|
Ghasemi-Ghahsareh A, Safaei-Ghomi J, Oboudatian HS. Supported l-tryptophan on Fe 3O 4@SiO 2 as an efficient and magnetically separable catalyst for one-pot construction of spiro[indene-2,2'-naphthalene]-4'-carbonitrile derivatives. RSC Adv 2022; 12:1319-1330. [PMID: 35425168 PMCID: PMC8978968 DOI: 10.1039/d1ra07654j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, l-tryptophan functionalized silica-coated magnetic nanoparticles were readily prepared and evaluated as a recyclable magnetic nanocatalyst for the synthesis of spiro[indene-2,2'-naphthalene]-4'-carbonitrile derivatives through the one-pot four-component reaction of malononitrile, cyclohexanone, aromatic aldehydes, and 1,3-indandione. This novel magnetic nanocatalyst was confirmed to be effective and provide products in moderate to excellent yields under reflux conditions. The structure of obtained nanoparticles was characterized using FT-IR, XRD, VSM, EDX, elemental mapping, FE-SEM, and TGA. This synthetic protocol provides several benefits such as excellent yields in short reaction times (64-91%), saving costs, reusability of the catalyst using an external magnet (seven runs), and low catalyst loading.
Collapse
Affiliation(s)
- Aref Ghasemi-Ghahsareh
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98-31-55552935 +98-31-55912385
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98-31-55552935 +98-31-55912385
| | - Hourieh Sadat Oboudatian
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P. O. Box 87317-51167 Kashan I. R. Iran +98-31-55552935 +98-31-55912385
| |
Collapse
|
8
|
Pareek A, Sivanandan ST, Bhagat S, Namboothiri IN. [3+2]-annulation of oxindolinyl-malononitriles with Morita–Baylis–Hillman acetates of nitroalkenes for the regio- and diastereoselective synthesis of spirocyclopentane-indolinones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ghora S, Sreenivasulu C, Satyanarayana G. A Domino Heck Coupling–Cyclization–Dehydrogenative Strategy for the One-Pot Synthesis of Quinolines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1589-7548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient, one-pot, domino synthesis of quinolines via the coupling of iodoanilines with allylic alcohols facilitated by palladium catalysis is described. The overall synthetic process involves an intermolecular Heck coupling between 2-iodoanilines and allylic alcohols, intramolecular condensation of in situ generated ketones with an internal amine functional group, and a dehydrogenation sequence. Notably, this protocol occurs in water as a green solvent. Significantly, the method exhibits broad substrate scope and is applied for the synthesis of deuterated quinolines through a deuterium-exchange process.
Collapse
|