1
|
Zhang C, Cheng H, An Y, Li S, Wu J, Zheng D. Catalyst-Free Radical Carbosulfonylation of Enamides with Indoles, Aryldiazonium Tetrafluoroborates, and DABCO·(SO 2) 2. Org Lett 2024; 26:8307-8311. [PMID: 39311449 DOI: 10.1021/acs.orglett.4c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we have developed a catalyst-free four-component carbosulfonylation of enamides involving indoles, DABCO·(SO2)2, and aryldiazonium tetrafluoroborates for the preparation of various β-amidosulfone products in moderate to excellent yields. This approach features mild reaction conditions, high step-efficiency, and broad substrate scope, which provides a green and efficient strategy for carbosulfonyl difunctionalization of enamides. Based on the results of mechanism studies, a radical tandem reaction process is proposed for the transformation.
Collapse
Affiliation(s)
- Changmei Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Hao Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shaoyu Li
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Danqing Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Guo C, Wang X, Ding Q, Wu J. C-H Bond Sulfonylation from Thianthrenium Salts and DABCO·(SO 2) 2: Synthesis of 2-Sulfonylindoles. J Org Chem 2024; 89:9672-9680. [PMID: 38871666 DOI: 10.1021/acs.joc.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A three-component reaction of 1-(1H-indol-1-yl)isoquinolines or 1-(pyridin-2-yl)-1H-indoles, DABCO·(SO2)2, and thianthrenium salts under synergistic photoredox and palladium catalysis is accomplished. This direct C-H bond sulfonylation of indoles with the insertion of sulfur dioxide under mild conditions works efficiently, giving rise to a wide range of 2-sulfonated indoles in moderate to good yields under mild conditions. In this protocol, the generality of aryl/alkyl thianthrenium salts is demonstrated as well. A photoredox radical process combined with palladium catalysis is proposed.
Collapse
Affiliation(s)
- Chen Guo
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xinhua Wang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qiuping Ding
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Kumar R, Bhadoria D, Kant R, Kumar A. Regio- and Stereoselective Intermolecular 1,2-Difunctionalization of Terminal Alkynes: An Approach to Access ( Z)-β-Amidovinylsulfones. J Org Chem 2024; 89:2873-2884. [PMID: 38354303 DOI: 10.1021/acs.joc.3c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed the first I2/base-catalyzed regio- and stereoselective intermolecular β-amidosulfonylation of terminal alkynes using sodium sulfinates and quinoxalinone derivatives. The present methodology is compatible with a broad spectrum of various heterocyclic amides, terminal alkynes, and sodium sulfinates. It provides rapid access to valuable (Z)-β-amidovinyl sulfones at mild conditions. Moreover, the synthetic application of this methodology was demonstrated by the late-stage functionalization of numerous bioactive molecules.
Collapse
Affiliation(s)
- Rajesh Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Deepak Bhadoria
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Atul Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Huang YW, Li JZ, Yang F, Zhang XY, Wang YJ, Meng XC, Leng BR, Wang DC, Zhu YL. Photocatalytic selective synthesis of ( E)-β-aminovinyl sulfones and ( E)-β-amidovinyl sulfones using Ru(bpy) 3Cl 2 as the catalyst. RSC Adv 2024; 14:700-706. [PMID: 38173585 PMCID: PMC10758941 DOI: 10.1039/d3ra08272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Selectively producing a variety of valuable compounds using controlled chemical reactions starting from a common material is an appealing yet complex concept. Herein, a photocatalytic approach for the selective synthesis of (E)-β-aminovinyl sulfones and (E)-β-amidovinyl sulfones from allenamides and sodium sulfinates was established. This reaction exhibits the traits of an eco-friendly solvent and adjustable amide cleavage, and can accommodate a diverse range of substrates with exceptional functional group tolerance. Based on control experiments and deuterium labeling experiments, a plausible radical reaction pathway is proposed.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Jia-Zhuo Li
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Feng Yang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xi-Yu Zhang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yan-Jing Wang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin-Chao Meng
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Bo-Rong Leng
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
- College of Life and Health, Nanjing Polytechnic Institute Nanjing 211816 P. R. China
| | - De-Cai Wang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yi-Long Zhu
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
5
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Wu YH, Li CJ, Wei ZL, Liao WW. Multicomponent Cyclization with an Inorganic Sulfur Dioxide Surrogate: Straightforward Construction of Difluorinated Benzosultams. Org Lett 2022; 24:9112-9117. [DOI: 10.1021/acs.orglett.2c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Yu-Heng Wu
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Cheng-Jing Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P R China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
7
|
Shan QC, Liu S, Shen Y, Ma M, Duan XH, Gao P, Guo LN. Switchable In Situ SO 2 Capture and CF 3 Migration of Enol Triflates with Peroxyl Compounds under Iron Catalysis. Org Lett 2022; 24:6653-6657. [PMID: 36048533 DOI: 10.1021/acs.orglett.2c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable in situ SO2 capture and CF3 migration of enol triflates with peroxyl compounds under iron catalysis are presented. By regulating the structure of peroxides, a variety of keto-functionalized dialkyl sulfones and α-trifluoromethyl ketones were selectively synthesized in good yields under mild conditions.
Collapse
Affiliation(s)
- Qi-Chao Shan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuncheng Shen
- Shaanxi Yuneng Group Energy and Chemical Research Institute Co., Ltd, Yu'lin 719000, China
| | - Mingming Ma
- Shaanxi Yuneng Group Energy and Chemical Research Institute Co., Ltd, Yu'lin 719000, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Chen L, Zhang X, Zhou M, Shen L, Kramer S, Lian Z. Enantioselective Four-Component Arylsulfonylcyanation of Vinylarenes via the Insertion of SO 2 Enabled by SOgen as SO 2 Surrogate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Shen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Lv H, He X, Shen L, Zhang X, Lian Z. Palladium‐Catalyzed Domino Cyclization/Direct Aminosulfonylation between Aryl Iodides and Amines via the Insertion of Sulfur Dioxide. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haiping Lv
- Sichuan University West China Hospital CHINA
| | - Xiaochun He
- Sichuan University West China Hospital CHINA
| | - Lin Shen
- Sichuan University West China Hospital CHINA
| | | | - Zhong Lian
- Sichuan University West China Hospital CHINA
| |
Collapse
|
10
|
Hu X, Tao M, Ma Z, Zhang Y, Li Y, Liang D. Regioselective Photocatalytic Dialkylation/Cyclization Sequence of 3‐Aza‐1,5‐dienes: Access to 3,4‐Dialkylated 4‐Pyrrolin‐2‐ones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao Hu
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Minglin Tao
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Zhongxiao Ma
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Yanni Li
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| |
Collapse
|
11
|
Wang X, You F, Xiong B, Chen L, Zhang X, Lian Z. Metal- and base-free tandem sulfonylation/cyclization of 1,5-dienes with aryldiazonium salts via the insertion of sulfur dioxide. RSC Adv 2022; 12:16745-16750. [PMID: 35754872 PMCID: PMC9170380 DOI: 10.1039/d2ra03034a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
A metal- and base-free 5-endo-trig sulfonylative cyclization between 1,5-dienes, aryldiazonium salts and SO2 (from SOgen) is presented. This method could successfully produce sulfonylated pyrrolin-2-ones in one pot with excellent regioselectivity and good-to-excellent yields. This strategy features mild reaction conditions and broad substrate scope. Moreover, a scale-up reaction and three synthetic applications demonstrate the practicality of this method. Lastly, control experiments indicate that the 5-endo-trig sulfonylative cyclization may proceed in a radical pathway. A new metal- and base-free method for synthesizing sulfonylated pyrrolin-2-ones from 1,5-dienes, aryldiazonium salts and SO2 is presented. This transformation features mild reaction conditions and broad substrate scope.![]()
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Fengzhi You
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| |
Collapse
|
12
|
Asahara H, Takao N, Moriguchi M, Inoue T, Ohkubo K. Visible-light-induced phosgenation of amines by chloroform oxygenation using chlorine dioxide. Chem Commun (Camb) 2022; 58:6176-6179. [PMID: 35474124 DOI: 10.1039/d2cc01336c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the visible-light-induced in situ preparation of COCl2 through the oxygenation of chloroform in the presence of chlorine dioxide, which leads to the safe constructions of carbamoyl chlorides with good-to-high yields and wide substrate scopes. In addition, this method can also be applied to the synthesis of various carbonates.
Collapse
Affiliation(s)
- Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nozomi Takao
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Maiko Moriguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. .,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Li Q, Huang J, Cao Z, Zhang J, Wu J. Photoredox-catalyzed reaction of thianthrenium salts, sulfur dioxide and hydrazines. Org Chem Front 2022. [DOI: 10.1039/d2qo00768a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A photoredox-catalyzed reaction of thianthrenium salts, hydrazines and DABCO·(SO2)2 is accomplished, providing diverse arenesulfonohydrazides in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Qiangwei Li
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiapian Huang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zenghui Cao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
He JQ, Yang ZX, Zhou XL, Li Y, Gao S, Shi L, Liang D. Exploring the regioselectivity of the cyanoalkylation of 3-aza-1,5-dienes: photoinduced synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective cyanoalkylalkenylation of 3-aza-1,5-dienes with oxime esters induced by visible light.
Collapse
Affiliation(s)
- Jia-Qin He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhi-Xian Yang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xue-Lu Zhou
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
15
|
Li Y, Zhang X, Lian Z. Copper catalyzed cyano-sulfonylation of allenes via the insertion of sulfur dioxide toward the synthesis of ( E)-α-cyanomethyl vinylsulfones. Org Chem Front 2022. [DOI: 10.1039/d2qo01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and practical method for highly regio- and stereo-selective cyanosulfonylation of allenes by inserting sulfur dioxide to synthesize useful (E)-α-cyanomethyl vinylsulfones has been explored.
Collapse
Affiliation(s)
- Yue Li
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
16
|
Xu J, Zhang Y, Han J, Su A, Qiao H, Zhang C, Tang J, Shen X, Sun B, Yu W, Zhai S, Wang X, Wu Y, Su W, Duan H. Providing direction for mechanistic inferences in radical cascade cyclization using Transformer model. Org Chem Front 2022. [DOI: 10.1039/d2qo00188h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Even in modern organic chemistry, predicting or proposing a reaction mechanism and speculating on reaction intermediates remains challenging. For example, it is challenging to predict the regioselectivity of radical attraction...
Collapse
|
17
|
Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org Biomol Chem 2021; 19:8295-8300. [PMID: 34519742 DOI: 10.1039/d1ob01485d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical sulfonylation of enamides with sodium sulfinates was developed in an undivided cell in constant current mode, leading to the formation of β-amidovinyl sulfones in moderate to good yields. The catalyst-, electrolyte- and oxidant-free protocol features good functional group tolerance and employs electric current as a green oxidant. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xinyi Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Guixia Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yushan Xie
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
18
|
Tang K, Chen Y, Guan J, Wang Z, Chen K, Xiang H, Yang H. Visible-light-promoted olefinic trifluoromethylation of enamides with CF 3SO 2Na. Org Biomol Chem 2021; 19:7475-7479. [PMID: 34612366 DOI: 10.1039/d1ob01410b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible-light-promoted olefinic C-H trifluoromethylation of enamides was developed by employing cheap and stable Langlois' reagent as the CF3 source. A series of β-CF3 enamides were obtained in moderate to good yields with high E-isomer selectivity under mild conditions. Preliminary mechanistic studies suggest that molecular oxygen acts as the terminal oxidant for this net oxidative process, and the E isomer selectivity could be well explained by a base-assisted deprotonation of the cation intermediate.
Collapse
Affiliation(s)
- Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | | | | | |
Collapse
|