1
|
Chen Z, Zhao S, Wang T, Xue F, Zhu C, Yue Y, Feng C. Electrooxidative 1,3-Oxo/Carboamination of Arylcyclopropanes. J Org Chem 2024; 89:12769-12774. [PMID: 39140316 DOI: 10.1021/acs.joc.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, the work demonstrates an electrochemically paired electrolysis approach facilitating the efficient achievement of the electrooxidative 1,3-oxo/carboamination of arylcyclopropanes under mild conditions. The formation of 1,3-arylamination of arylcyclopropanes involves commercially available amine redox mediators through a radical-radical process. In addition, the successful execution of β-amino ketones also occurs under atmospheric conditions. The control experiments supported the existence of key benzylic radical intermediates in the reaction pathway.
Collapse
Affiliation(s)
- Ziyan Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuaishuai Zhao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tiantian Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanni Yue
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering of Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Feng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Nachimuthu K, Nallasivam JL. Recent updates on vinyl cyclopropanes, aziridines and oxiranes: access to heterocyclic scaffolds. Org Biomol Chem 2024; 22:4212-4242. [PMID: 38738483 DOI: 10.1039/d4ob00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This present review delineates the repertoire of vinyl cyclopropanes and their stuctural analogues to accomplish a wide array of oxa-cycles, aza-cycles, and thia-cycles under transition metal catalysis and metal-free approaches from early 2019 to the present date. The generation of electrophilic π-allyl intermediates and 1-3/1-5-dipolarophile chemistry originating from VCPs are always green, step- and atom-economical and sustainable strategies in comparsion with prefunctionalized and/or C-H activation protocols. Here, the strained ring-system extends its applicability by relieving the strain to undergo a ring-expansion reaction to accomplish 5-9 membered carbo- and heterocyclic systems. The availability of chiral ligands in the ring-expansion reaction of VCPs and their analogues has paved the way to realizing asymmetric synthetic transformations.
Collapse
Affiliation(s)
- Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| | - Jothi Lakshmi Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| |
Collapse
|
3
|
Su X, Wang Y, Feng Q, Sun J. Heterodifunctionalization of Electron-Rich Alkynes Catalyzed by in Situ Generated Silylium Ions. Org Lett 2024; 26:421-426. [PMID: 38166166 DOI: 10.1021/acs.orglett.3c04208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Silylium ions are versatile Lewis acids in organic synthesis. While they have been well-known for the activation of σ donors, catalysis initiated by the activation of π donors remains underdeveloped, particularly for alkynes. Herein, we demonstrate an example of silylium-catalyzed alkyne heterodifunctionalization. The silylium ion generated in situ from HNTf2 and the silyl reagent serve as superior catalysts in the efficient silylphosphination and silylcyanation of electron-rich alkynes with excellent regio- and stereoselectivity. The compatibility of this protocol with strongly coordinating ligands (Ph2P and CN) not only complements the metal-catalyzed systems but also expands the scope of silylium-catalyzed reactions.
Collapse
Affiliation(s)
- Xiang Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Qiang Feng
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Guo J, Liu S, Jing J, Fan Y, Fu Y, Liu S, Wang W, Gao L, Song Z. Controllable Si-C Bond Formation from Trihydrosilanes En Route to Synthesis of 1,4-Azasilinanes with Diverse Silyl Functionalities. Org Lett 2023; 25:7428-7433. [PMID: 37791679 DOI: 10.1021/acs.orglett.3c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A B(C6F5)3-catalyzed controllable inter/intra-/intermolecular Si-C bond formation process has been developed from trihydrosilane and dienamide with alkenes, anilines, or aryl iodides. A variety of 1,4-azasilinanes have been generated with diverse exo-cyclic heteroleptic disubstitutions on silicon, thereby expanding the range of silaazacyclic rings available for the discovery of silicon-containing drugs.
Collapse
Affiliation(s)
- Jiawei Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemistry & Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, People's Republic of China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shunfa Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Jing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yingdong Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shiyang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
5
|
Long PW, Wang G, Klare HFT, Oestreich M. Silylium-Ion-Promoted Skeletal Reorganization of β-Silylated Cyclopropanes Bearing an Allyl Group at the Silicon Atom Coupled with Intermolecular Formation of a Quaternary Carbon Atom. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng-Wei Long
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hendrik F. T. Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|