1
|
Wang Y, Wei X, Xue A, Huang Y, Qu J, Wang B. Construction of atropisomeric benzoxepinone-embedded styrenes via intramolecular [3+2] cycloaddition and catalytic kinetic resolution. Chem Commun (Camb) 2024; 60:12864-12867. [PMID: 39400542 DOI: 10.1039/d4cc04394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We present an intramolecular [3+2] cycloaddition of innovative (E)-α-aryl enal derivatives with 4-aminopyrazolone hydrochlorides/3-aminooxindole hydrochlorides to afford an array of atropisomeric benzoxepinone-based styrenes fused to spiro[pyrrolidine-pyrazolone/oxindole] scaffolds, and kinetic resolutions of the racemic adducts were implemented by reacting with benzyl alcohols, giving the corresponding two types of axially chiral styrenes in enantioenriched form with high s-factor. In addition, product transformations such as oxidative dehydrogenation and cross-coupling reactions have been demonstrated.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Aiqi Xue
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
2
|
Li X, Kong L, Yin S, Zhou H, Lin A, Yao H, Gao S. Palladium-Catalyzed Atroposelective Suzuki-Miyaura Coupling to Construct Axially Chiral Tetra-Substituted α-Boryl Styrenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309706. [PMID: 38602437 PMCID: PMC11199998 DOI: 10.1002/advs.202309706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Lingyu Kong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shuxin Yin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
3
|
Lian PF, Wang Y, Li ZH, Zhang SY, Duan A, Bai HY. Enantioselective Synthesis of Axially Chiral Sulfone-Containing Styrenes Based on Ion-Exchange Strategy. Org Lett 2024; 26:3498-3502. [PMID: 38661476 DOI: 10.1021/acs.orglett.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A novel ion exchange strategy has been developed to enable the asymmetric construction of axially chiral sulfone-containing styrenes. This approach provides a practical synthesis pathway for various axially chiral sulfone-containing styrenes with good yields, exceptional enantioselectivities, and nearly complete E/Z selectivities. Additionally, the reaction mechanism is elucidated in detail through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ying Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing 401120, China
| |
Collapse
|
4
|
Bharadwaj KC. Chemoselective Intramolecular Morita-Baylis-Hillman Reaction; Acrylamide and Ketone as Sluggish Reacting Partners on a Labile Framework. J Org Chem 2024. [PMID: 38164748 DOI: 10.1021/acs.joc.3c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Chemoselectivity is an important issue frequently encountered while working over labile precursors. Carbonyl compounds with a heteroatom at the β carbon are sensitive precursors because they are prone to elimination under different conditions. Morita-Baylis-Hillman (MBH) reaction, although a widespread method for C-C bond formation, has its own limitations. Acrylamide and ketone are such limitations of the MBH reaction. Using them together for an intramolecular MBH (IMBH) reaction on a labile framework prone to elimination is a significant 2-fold synthetic challenge. A highly chemoselective IMBH reaction on such precursors has been established using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a promoter. The protocol leads to quick access to a diversely substituted and functionalized piperidone framework in high yields. Various substitution patterns in the form of 34 successful examples have been studied. A diastereoselective version and tolerance to various functional and protecting groups are the added advantages of the developed methodology. A tertiary carbon at the β position of ketone, however, led to complete reversal of selectivity and gave only the elimination product. Control experiments toward a better understanding of the substitution pattern, role of catalyst, and mechanistic study have been carried out. As an application of the IMBH adduct, a one-step allylic rearrangement for the dihydropyridone framework has also been demonstrated.
Collapse
|
5
|
Qian PF, Zhou T, Shi BF. Transition-metal-catalyzed atroposelective synthesis of axially chiral styrenes. Chem Commun (Camb) 2023; 59:12669-12684. [PMID: 37807950 DOI: 10.1039/d3cc03592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Axially chiral styrenes, a type of atropisomer analogous to biaryls, have attracted great interest because of their unique presence in natural products and asymmetric catalysis. Since 2016, a number of methodologies have been developed for the atroposelective construction of these chiral skeletons, involving both transition metal catalysis and organocatalysis. In this feature article, we aim to provide a comprehensive understanding of recent advances in the asymmetric synthesis of axially chiral styrenes catalyzed by transition metals, integrating scattered work with different catalytic systems together. This feature article is cataloged into five sections according to the strategies, including asymmetric coupling, enantioselective C-H activation, central-to-axial chirality transfer, asymmetric alkyne functionalization, and atroposelective [2+2+2] cycloaddition.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Tao Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
6
|
Dutta L, Mondal A, Maurya JP, Mukhopadhyay D, Ramasastry SSV. Conceptual advances in nucleophilic organophosphine-promoted transformations. Chem Commun (Camb) 2023; 59:11045-11056. [PMID: 37656437 DOI: 10.1039/d3cc03648k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Catalysis by trivalent nucleophilic organophosphines has emerged as an essential tool in organic synthesis. Several new organic transformations promoted by phosphines substantiate and complement the existing synthetic chemistry tools. Mere design of the substrate and reagent combinations has introduced new modes of reactivity patterns, which are otherwise difficult to achieve. These design considerations have led to the rapid build-up of complex molecular entities and laid a solid foundation to synthesise bioactive natural products and pharmaceuticals. This article presents an overview of some of the conceptual advances, including our contributions to nucleophilic organophosphine chemistry. The scope, limitations, mechanistic insights, and applications of these metal-free transformations are discussed elaborately.
Collapse
Affiliation(s)
- Lona Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Atanu Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - Dipto Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
7
|
Zhang T, Bandero V, Corcoran C, Obaidi I, Ruether M, O'Brien J, O'Driscoll L, Frankish N, Sheridan H. Design, synthesis and biological evaluation of a novel bioactive indane scaffold 2-(diphenylmethylene)c-2,3-dihydro-1H-inden-1-one with potential anticancer activity. Eur J Pharm Sci 2023; 188:106529. [PMID: 37459901 DOI: 10.1016/j.ejps.2023.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Over the past decades, designing of privileged structures has emerged as a useful approach to the discovery and optimisation of novel biologically active molecules, and many have been successfully exploited across and within different target families. Examples include indole, quinolone, isoquinoline, benzofuran and chromone, etc. In the current study, we focus on synthesising a novel hybrid scaffold constituting naturally occurring benzophenone (14) and indanone (22) ring systems, leading to a general structure of 2-(diphenylmethylene)-2,3-dihydro-1H-inden-1-one (23). It was hypothesised this new hybrid system would provide enhanced anti-cancer activity owing to the presence of the common features associated with the tubulin binding small molecule indanocine (10) and the estrogen receptor (ER) antagonist tamoxifen (24). Key hybrid molecules were successfully synthesised and characterised, and the in vitro cytotoxicity assays were performed against cancer cell lines: MCF7 (breast) and SKBR3 (breast), DU145 (prostate) and A549 (lung). The methyl-, chloro- and methoxy-, para-substituted benzophenone hybrids displayed the greatest degree of cytotoxicity and the E-configuration derivatives 45, 47 and 49 being significantly most potent. We further verified that the second benzyl moiety of this novel hybrid scaffold is fundamental to enhance the cytotoxicity, especially in the SKBR3 (HER2+) by the E-methyl lead molecule 47, MCF7 (ER+) by 45 and 49, and A549 (NSCLC) cell lines by 49. These hybrid molecules also showed a significant accumulation of SKBR3 cells at S-phase of the cell cycle after 72 hrs, which demonstrates besides of being cytotoxic in vitro against SKBR3 cells, 47 disturbs the replication and development of this type of cancer causing a dose-dependent cell cycle arrest at S-phase. Our results suggest that DNA damage might be involved in the induction of SKBR3 cell death caused by the hybrid molecules, and therefore, this novel system may be an effective suppressor of HER2+/Neu-driven cancer growth and progression. The present study points to potential structural optimisation of the series and encourages further focussed investigation of analogues of this scaffold series toward their applications in cancer chemoprevention or chemotherapy.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7, D07 ADY7, Ireland; The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, D02 PN40, Ireland; Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
| | - Vilmar Bandero
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
| | - Claire Corcoran
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
| | - Ismael Obaidi
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, D02 PN40, Ireland; College of Pharmacy, University of Babylon, Babylon, Iraq.
| | - Manuel Ruether
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - John O'Brien
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Lorraine O'Driscoll
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
| | - Neil Frankish
- Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
| | - Helen Sheridan
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, D02 PN40, Ireland; Drug Discovery Group, School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
| |
Collapse
|
8
|
Zhang XL, Gu J, Cui WH, Ye Z, Yi W, Zhang Q, He Y. Stepwise Asymmetric Allylic Substitution-Isomerization Enabled Mimetic Synthesis of Axially Chiral B,N-Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202210456. [PMID: 36281992 DOI: 10.1002/anie.202210456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/07/2022]
Abstract
Axially chiral molecules bearing multiple stereogenic axes are of great importance in the field of organic chemistry. However, the efficient construction of atropisomers featuring two different types of stereogenic axes has rarely been explored. Herein, we report the novel atroposelective synthesis of configurationally stable axially chiral B,N-heterocycles. By using stepwise asymmetric allylic substitution-isomerization (AASI) strategy, diaxially chiral B,N-heterocycles bearing B-C and C-N axes that are related to the moieties of axially chiral enamines and arylborons were also obtained. In this case, all four stereoisomers of diaxially chiral B,N-heterocycles were stereodivergently afforded in high enantioselectivities. Density functional theory (DFT) studies demonstrated that the NH⋅⋅⋅π interactions played a unique role in the promotion of stereospecific isomerization, thereby leading to the highly efficient central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
9
|
Dai DT, Yang MW, Chen ZY, Wang ZL, Xu YH. Chelation-Controlled Stereospecific Cross-Coupling Reaction between Alkenes for Atroposelective Synthesis of Axially Chiral Conjugated Dienes. Org Lett 2022; 24:1979-1984. [DOI: 10.1021/acs.orglett.2c00386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dong-Ting Dai
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhi-Yuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Yan JL, Maiti R, Ren SC, Tian W, Li T, Xu J, Mondal B, Jin Z, Chi YR. Carbene-catalyzed atroposelective synthesis of axially chiral styrenes. Nat Commun 2022; 13:84. [PMID: 35013298 PMCID: PMC8748895 DOI: 10.1038/s41467-021-27771-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022] Open
Abstract
Axially chiral styrenes bearing a chiral axis between a sterically non-congested acyclic alkene and an aryl ring are difficult to prepare due to low rotational barrier of the axis. Disclosed here is an N-heterocyclic carbene (NHC) catalytic asymmetric solution to this problem. Our reaction involves ynals, sulfinic acids, and phenols as the substrates with an NHC as the catalyst. Key steps involve selective 1,4-addition of sulfinic anion to acetylenic acylazolium intermediate and sequential E-selective protonation to set up the chiral axis. Our reaction affords axially chiral styrenes bearing a chiral axis as the product with up to > 99:1 e.r., > 20:1 E/Z selectivity, and excellent yields. The sulfone and carboxylic ester moieties in our styrene products are common moieties in bioactive molecules and asymmetric catalysis.
Collapse
Affiliation(s)
- Jia-Lei Yan
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Rakesh Maiti
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shi-Chao Ren
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jun Xu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Bivas Mondal
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
| |
Collapse
|