1
|
Murugesan V, Syam A, Anantharaj GV, Rasappan R. Alkenylation of unactivated alkanes: synthesis of Z-alkenes via dual Co-TBADT catalysis. Chem Commun (Camb) 2024; 60:14049-14052. [PMID: 39526920 DOI: 10.1039/d4cc04651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydroalkylation of terminal alkynes via C-H activation is the most atom-economical and straightforward method for synthesizing alkenes. They remain confined to using C(sp2)-H or activated C(sp3)-H bonds. A chelating group enabled the alkenylation of C(sp3)-H bonds, resulting in E alkenes. Protocols by which alkenylation of unactivated C(sp3)-H bonds occurs without a chelating group via metal-hydride or radical pathways remain unknown. Our cobalt-HAT catalysis achieves the desired Z alkene with excellent regio- and diastereoselectivity via C-H activation.
Collapse
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Anagha Syam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
2
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
3
|
Marie N, Ma JA, Tognetti V, Cahard D. Photocatalyzed Cascade Hydrogen Atom Transfers for Assembly of Multi-Substituted α-SCF 3 and α-SCF 2H Cyclopentanones. Angew Chem Int Ed Engl 2024; 63:e202407689. [PMID: 38845586 DOI: 10.1002/anie.202407689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 07/23/2024]
Abstract
A photocatalyzed formal (3+2) cycloaddition has been developed to construct original polysubstituted α-SCF3 cyclopentanones in a regio- and diastereoselective manner. This building block approach leverages trifluoromethylthio alkynes and branched/linear aldehydes, as readily available reaction partners, in consecutive hydrogen atom transfers and C-C bond formations. Difluoromethylthio alkynes are also compatible substrates. Furthermore, the potential for telescoped reaction starting from alcohols instead of aldehydes was demonstrated, as well as process automatization and scale-up under continuous microflow conditions. This prompted density functional theory (DFT) calculations to support a radical-mediated cascade process.
Collapse
Affiliation(s)
- Nicolas Marie
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Vincent Tognetti
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
4
|
Hong BC, Indurmuddam RR. Tetrabutylammonium decatungstate (TBADT), a compelling and trailblazing catalyst for visible-light-induced organic photocatalysis. Org Biomol Chem 2024; 22:3799-3842. [PMID: 38651982 DOI: 10.1039/d4ob00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Tetrabutylammonium decatungstate (TBADT) has recently emerged as an intriguing photocatalyst under visible-light or near-visible-light irradiation in a wide range of organic reactions that were previously not conceivable. Given its ability to absorb visible light and excellent effectiveness in activating unactivated chemical bonds, it is a promising addition to traditional photocatalysts. This review covers some of the contemporary developments in visible-light or near-visible-light photocatalysis reactions enabled by the TBADT catalyst to 2023, with the contents organized by reaction type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | | |
Collapse
|
5
|
Pilli R, Selvam K, Balamurugan BSS, Jose V, Rasappan R. C(sp 3)-C(sp 3) Coupling of Cycloalkanes and Alkyl Halides via Dual Photocatalytic Hydrogen Atom Transfer and Nickel Catalysis. Org Lett 2024; 26:2993-2998. [PMID: 38592728 DOI: 10.1021/acs.orglett.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Functionalization of C(sp3)-H bonds represents the most straightforward and atom-economical transformation in organic synthesis. An innovative approach integrating photocatalytic hydrogen atom transfer (HAT) and transition metal catalysis has made significant progress in the coupling of α-heterosubstituted C-H bonds with alkyl halides. However, unactivated alkanes were ineffective as a result of the preponderance of byproduct formation. Herein, we demonstrate direct HAT and nickel catalysis in the coupling of cycloalkanes and benzyl bromides/primary alkyl iodides. Additionally, tetrabutylammonium decatungstate (TBADT) was recovered and recycled.
Collapse
Affiliation(s)
- Ramadevi Pilli
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Keerthika Selvam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Bala S S Balamurugan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vidya Jose
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
6
|
Fan P, Chen Z, Wang C. Nickel/Photo-Cocatalyzed Three-Component Alkyl-Acylation of Aryl-Activated Alkenes. Org Lett 2023. [PMID: 38048426 DOI: 10.1021/acs.orglett.3c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we disclose a nickel/photo-cocatalyzed three-component alkyl-acylation of aryl-substituted alkenes with aldehydes and electron-withdrawing-group-activated alkyl bromides, providing straightforward access to various ketones under mild and ligand-free conditions. The photocatalyst TBADT plays a dual role in activating the acyl C-H bond of aldehydes via hydrogen atom transfer and reducing the C-Br bond of alkyl bromides via single-electron transfer. While the terminal C-C bond is forged through polarity-matched radical-type addition, nickel is likely involved in the acylation step.
Collapse
Affiliation(s)
- Pei Fan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Zhe Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
7
|
Wang R, Wang C. Asymmetric imino-acylation of alkenes enabled by HAT-photo/nickel cocatalysis. Chem Sci 2023; 14:6449-6456. [PMID: 37325152 PMCID: PMC10266448 DOI: 10.1039/d3sc01945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
By merging nickel-mediated facially selective aza-Heck cyclization and radical acyl C-H activation promoted by tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer (HAT) photocatalyst, we accomplish an asymmetric imino-acylation of oxime ester-tethered alkenes with readily available aldehydes as the acyl source, enabling the synthesis of highly enantioenriched pyrrolines bearing an acyl-substituted stereogenic center under mild conditions. Preliminary mechanistic studies support a Ni(i)/Ni(ii)/Ni(iii) catalytic sequence involving the intramolecular migratory insertion of a tethered olefinic unit into the Ni(iii)-N bond as the enantiodiscriminating step.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
8
|
Gao H, Guo L, Zhu Y, Yang C, Xia W. Visible-light-induced dehydrogenative amidation of aldehydes enabled by iron salts. Chem Commun (Camb) 2023; 59:2771-2774. [PMID: 36786156 DOI: 10.1039/d2cc06507j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A direct dehydrogenative amidation reaction of aldehydes and amines under a visible light mediated ligand-to-metal charge transfer (LMCT) process was described. In this protocol, aldehyde substrates were activated by photoinduced hydrogen atom abstraction (HAA), generating acyl chloride intermediates followed by nucleophilic addition of amines. The synthetic method furnishes good functional group tolerance and broad substrate scope toward both aliphatic and aromatic components.
Collapse
Affiliation(s)
- Han Gao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Yining Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
9
|
Mao Y, Fan P, Wang C. Photocatalyzed Formal All-Carbon [3+2] Cycloaddition of Aromatic Aldehydes with Arylethynyl Silanes. Org Lett 2022; 24:9413-9418. [PMID: 36534612 DOI: 10.1021/acs.orglett.2c03807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we report a photoinduced TBADT-catalyzed formal all-carbon [3+2] cycloaddition of aromatic aldehydes and arylethynyl silanes, which combines acyl C-H and ortho C-H activation of aromatic aldehydes, offering a new method for constructing the indanone scaffold under mild conditions. By choosing an appropriate silane as the precursor, one can selectively retain or remove the α-silyl group of the indanone products during the reaction. Preliminary mechanistic studies point to a reaction mechanism involving a 1,5-H shift as a key step.
Collapse
Affiliation(s)
- Yujia Mao
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Wang R, Fan P, Wang C. Nickel/Photo-Cocatalyzed Asymmetric Acyl C–H Allylation of Aldehydes and Formamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, People’s Republic of China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
11
|
Murugesan V, Muralidharan A, Anantharaj GV, Chinnusamy T, Rasappan R. Photoredox–Ni Dual Catalysis: Chelation-Free Hydroacylation of Terminal Alkynes. Org Lett 2022; 24:8435-8440. [DOI: 10.1021/acs.orglett.2c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anjana Muralidharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Tamilselvi Chinnusamy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
12
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
13
|
Chinchole A, Henriquez MA, Cortes-Arriagada D, Cabrera AR, Reiser O. Iron(III)-Light-Induced Homolysis: A Dual Photocatalytic Approach for the Hydroacylation of Alkenes Using Acyl Radicals via Direct HAT from Aldehydes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anurag Chinchole
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
| | - Marco A. Henriquez
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile
| | - Diego Cortes-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577 , Chile
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Bavaria 93053, Germany
| |
Collapse
|
14
|
[3+2] Cycloaddition of alkyl aldehydes and alkynes enabled by photoinduced hydrogen atom transfer. Nat Commun 2022; 13:4734. [PMID: 35961987 PMCID: PMC9374768 DOI: 10.1038/s41467-022-32467-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
[3+2] Cycloaddition is a step- and atom-economic method for the synthesis of five-membered rings. Despite the great success of 1,3-dipolar cycloadditions, the radical [3+2] annulation of alkynes remains a formidable challenge. Herein, a photoinduced decatungstate-catalyzed [3+2] cycloaddition of various internal alkynes using abundant aliphatic aldehydes as a three-carbon synthon is developed, producing elaborate cyclopentanones in 100% atom economy with excellent site-, regio-, and diastereoselectivity under mild conditions. The catalytic cycle consists of hydrogen atom abstraction from aldehydes, radical addition, 1,5-hydrogen atom transfer, anti-Baldwin 5-endo-trig cyclization, and back hydrogen abstraction. The power of this method is showcased by the late-stage elaboration of medicinally relevant molecules and total or formal synthesis of (±)-β-cuparenone, (±)-laurokamurene B, and (±)-cuparene. In contrast to the prevalence of 1,3-dipolar cycloadditions, radical [3+2] annulations of alkynes are underexplored. Here, the authors describe [3+2] cycloadditions of various internal alkynes with readily accessible aliphatic aldehydes via photoinduced decatungstate catalysis.
Collapse
|
15
|
Balakrishnan V, Ganguly A, Rasappan R. Interception of Nickel Hydride Species and Its Application in Multicomponent Reactions. Org Lett 2022; 24:4804-4809. [PMID: 35758604 DOI: 10.1021/acs.orglett.2c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogen borrowing strategy is an economical method for the α-functionalization of ketones. While this strategy is extremely advantageous, it does not lend itself to the synthesis of β,β-disubstituted ketones. This can be achieved, if the in situ generated metal hydride can be intercepted with a nucleophilic coupling partner. We present a multicomponent strategy for the coupling of alcohols, ketones, and boronic acids using only 1 mol % nickel catalyst and without the need for added ligands.
Collapse
Affiliation(s)
- Venkadesh Balakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
16
|
Li X, Mao Y, Fan P, Wang C. Nickel/Photo‐Cocatalyzed Acyl C−H Benzylation of Aldehydes with Benzyl Chlorides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Yujia Mao
- University of Science and Technology of China Chemistry CHINA
| | - Pei Fan
- Huainan Normal University Chemistry CHINA
| | - Chuan Wang
- University of Science and Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
17
|
Fan P, Mao Y, Wang C. Synthesis of 1,4-diketones via palladium/photo-cocatalyzed dehydrogenative cross-coupling. Org Chem Front 2022. [DOI: 10.1039/d2qo00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a palladium/TBADT-cocatalyzed dehydrogenative cross-coupling reaction, enabling the synthesis of a variety of 1,4-diketones starting from simple allylic alcohols and aldehydes as the precursors under mild reaction conditions.
Collapse
Affiliation(s)
- Pei Fan
- School of Chemistry and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yujia Mao
- Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
18
|
Maity B, Zhu C, Rueping M, Cavallo L. Mechanistic Understanding of Arylation vs Alkylation of Aliphatic Csp3–H Bonds by Decatungstate–Nickel Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhu
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
Hyodo M, Iwano H, Kasakado T, Fukuyama T, Ryu I. Using High-Power UV-LED to Accelerate a Decatungstate-Anion-Catalyzed Reaction: A Model Study for the Quick Oxidation of Benzyl Alcohol to Benzoic Acid Using Molecular Oxygen. MICROMACHINES 2021; 12:mi12111307. [PMID: 34832719 PMCID: PMC8623277 DOI: 10.3390/mi12111307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
High-power UV-LED irradiation (365 nm) effectively accelerated the decatungstate-anion-catalyzed oxidation of benzyl alcohol 1 to benzoic acid 3 via benzaldehyde 2. As the power of the UV-LED light increased, both the selectivity and yield of benzoic acid also increased. The reaction was finished within 1 h to give 3 in a 93% yield using 2 mol% of decatungstate anion catalyst. The combination of a flow photoreactor and high-power irradiation accelerated the oxidation reaction to an interval of only a few minutes.
Collapse
Affiliation(s)
- Mamoru Hyodo
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
- Correspondence: (M.H.); (I.R.)
| | - Hitomi Iwano
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
| | - Takayoshi Kasakado
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
| | - Takahide Fukuyama
- Department of Chemistry, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan;
| | - Ilhyong Ryu
- Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (H.I.); (T.K.)
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan
- Correspondence: (M.H.); (I.R.)
| |
Collapse
|
20
|
Fan P, Wang R, Wang C. Nickel/Photo-Cocatalyzed C(sp 2)-H Allylation of Aldehydes and Formamides. Org Lett 2021; 23:7672-7677. [PMID: 34553950 DOI: 10.1021/acs.orglett.1c02938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a nickel/photo-cocatalyzed C(sp2)-H allylation of aldehydes and formamides wherein both allyl acetates and allyl alcohols can be used as the allylating agents. In this reaction, radical-type umpolung of the formyl moiety is enabled by tetrabutylammonium decatungstate as a hydrogen-atom-transfer photocatalyst, whereas nickel serves to cleave the C-O bond of allyl acetates or allyl alcohols. The synergistic effect of these two catalysts provides new access to various β,γ-unsaturated ketones and amides with high selectivities.
Collapse
Affiliation(s)
- Pei Fan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|