1
|
Masithi P, Bhana AD, Venter GA, Su H, Spicer CD, Petersen WF, Hunter R. Cinchona Organocatalyzed Enantioselective Amination for Quaternized Serines as Tertiary Amides. Org Lett 2024; 26:9162-9167. [PMID: 39414395 PMCID: PMC11519915 DOI: 10.1021/acs.orglett.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Herein, we describe a Cinchona-aminocatalyzed enantioselective α-hydrazination of an α-formyl amide for the production of protected quaternized serines as tertiary amides with ee's of generally >98% and ≤99% yields. The proposed TS model supported by density functional theory calculations involves a quinuclidinium ion Brønsted acid-assisted delivery of DtBAD, which occurs from the Re face of an H-bonded enaminone when using a 9S-cinchonamine catalyst, resulting in a hydrazide with the R-configuration as determined by X-ray analysis.
Collapse
Affiliation(s)
- Phathutshedzo Masithi
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Ashlyn D. Bhana
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gerhard A. Venter
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Hong Su
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | | | - Wade F. Petersen
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roger Hunter
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Odagi M, Mori I, Sugimoto K, Nagasawa K. Enantioselective Oxidative Enolate Coupling of Oxindoles Catalyzed by Chiral Guanidinium Hypoiodite. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Io Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kota Sugimoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Sugimoto K, Mori I, Kato T, Yasui K, Xu B, Tan CH, Odagi M, Nagasawa K. Guanidinium Hypoiodite-Catalyzed Intramolecular Oxidative Coupling Reaction of Oxindoles with β-Dicarbonyls. J Org Chem 2023. [PMID: 36702628 DOI: 10.1021/acs.joc.2c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spiro[indoline-3,4'-piperidine] is a fundamental motif present in various biologically active compounds. Here, we report an intramolecular oxidative coupling reaction of oxindoles with β-dicarbonyls in the presence of a guanidinium hypoiodite catalyst, providing spiro-coupling products in moderate to excellent yields. Furthermore, a chiral hypoiodite catalyst derived from the chiral guanidinium organocatalyst is effective for the challenging asymmetric carbon-carbon bond-forming reaction, affording optically active spiro[indoline-3,4'-piperidines].
Collapse
Affiliation(s)
- Kota Sugimoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Io Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takanari Kato
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Yasui
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ban Xu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Choon Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Mazodze CM, Petersen WF. Silver-catalysed double decarboxylative addition-cyclisation-elimination cascade sequence for the synthesis of quinolin-2-ones. Org Biomol Chem 2022; 20:3469-3474. [PMID: 35420621 DOI: 10.1039/d2ob00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An atom-efficient silver-catalysed double carboxylative strategy for the one-step synthesis of quinolin-2-ones via an addition-cyclisation-elimination cascade sequence of oxamic acids to acrylic acids, mediated either thermally or photochemically, is reported. The reaction was applicable to the synthesis of a broad range of quinolin-2-ones and featured a double-disconnection approach that constructed the quinolin-2-one core via the formal and direct addition of a C(sp2)-H/C(sp2)-H olefin moiety to a phenylformamide precursor.
Collapse
Affiliation(s)
- C Munashe Mazodze
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| |
Collapse
|
5
|
Ma Z, Zhou A, Xia C. Strategies for total synthesis of bispyrrolidinoindoline alkaloids. Nat Prod Rep 2022; 39:1015-1044. [PMID: 35297915 DOI: 10.1039/d1np00060h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering up to 2021Complex cyclotryptamine alkaloids with a bispyrrolidino[2,3-b]indoline (BPI) skeleton are an intriguing family of natural products, exhibiting wide systematic occurrences, large structural diversity, and multiple biological activities. Based on their structural characteristics, BPI alkaloids can be classified into chimonanthine-type BPI alkaloids, BPI diketopiperazines, and BPI epipolythiodiketopiperazines. These intricate molecules have captivated great attention soon after their isolation and identification in the 1960s. Due to the structural complexity, the total synthesis of these cyclotryptamine alkaloids is challenging. Nevertheless, remarkable progress has been achieved in the last six decades; in particular, several methods have been successfully established for the construction of vicinal all-carbon quaternary stereocenters. In this review, the structural diversity and chemical synthesis of these BPI alkaloids were summarized. BPI alkaloids are mainly synthesized by the methods of oxidative dimerization, reductive dimerization, and alkylation of bisoxindole. The purpose of this review is to present overall strategies for assembling the BPI skeleton and efforts towards controlling the stereocenters.
Collapse
Affiliation(s)
- Zhixian Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Ankun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| |
Collapse
|
6
|
Manenti M, Lo Presti L, Molteni G, Silvani A. Unexpected chiral vicinal tetrasubstituted diamines via borylcopper-mediated homocoupling of isatin imines. Beilstein J Org Chem 2022; 18:303-308. [PMID: 35330782 PMCID: PMC8919417 DOI: 10.3762/bjoc.18.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 01/10/2023] Open
Abstract
Addressing the asymmetric synthesis of oxindole-based α-aminoboronic acids, instead of the expected products we disclosed the efficient homocoupling of oxindole-based N-tert-butanesulfinyl imines, with the generation of chiral, quaternary 1,2-diamines in a mild and completely stereoselective way. The obtained 3,3'-bisoxindole derivatives were fully characterized by NMR and single-crystal X-ray diffraction analysis and proved to be single diastereoisomers and atropisomers. A plausible mechanism for the one-pot Cu(II)-catalyzed Bpin addition to the isatin-derived ketimine substrate and subsequent homocoupling is described.
Collapse
Affiliation(s)
- Marco Manenti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Giorgio Molteni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| |
Collapse
|
7
|
Shaw K, Sharma S, Khatua A, Paul A, Bisai A. Oxidative electro-organic synthesis of dimeric hexahydropyrrolo-[2,3- b]indole alkaloids involving PCET: total synthesis of (±)-folicanthine. Org Biomol Chem 2021; 19:9390-9395. [PMID: 34705000 DOI: 10.1039/d1ob01463c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient electrochemical oxidation strategy for the total synthesis of a dimeric hexahydropyrrolo[2,3-b]indole alkaloid, (±)-folicanthine (1b), has been envisioned. Control experiments suggest that a PCET pathway involving stepwise electron transfer followed by proton transfer (ET-PT) was involved in the key oxidative dimerization process.
Collapse
Affiliation(s)
- Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, West Bengal, India
| |
Collapse
|