1
|
Li J, Hu QL, Liu JS, Xiong XF. Triflic Acid-Mediated Chemoselective Indole C2-Heteroarylation of Peptide Tryptophan Residues by Triazine. Org Lett 2024; 26:10928-10933. [PMID: 39648991 DOI: 10.1021/acs.orglett.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Peptide modification provides opportunities to afford peptides with designed functions. Among the proteogenic amino acids, tryptophan represents an ideal and attractive target for peptide modification because of the exclusive chemical reactivity of its unique indole structure. Herein, we reported an indole C2 position-selective and transition-metal-free modification approach for indole derivatives and tryptophan-containing peptides by triazine derivatives via triflic acid activation and that the incorporated functional group could act as an orthogonal handle for further bioconjugation via an inverse electron demand Diels-Alder reaction.
Collapse
Affiliation(s)
- Jian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Jia-Shu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Bityukov OV, Serdyuchenko PY, Kirillov AS, Nikishin GI, Vil’ VA, Terent’ev AO. Advances in radical peroxidation with hydroperoxides. Beilstein J Org Chem 2024; 20:2959-3006. [PMID: 39600957 PMCID: PMC11590016 DOI: 10.3762/bjoc.20.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Organic peroxides have become sought-after functionalities, particularly following the multi-tone consumption in polymer production and success in medicinal chemistry. The selective introduction of a peroxide fragment at different positions on the target molecule is a priority in the modern reaction design. The pioneering Kharasch-Sosnovsky peroxidation became the basic universal platform for the development of peroxidation methods, with its great potential for rapid generation of complexity due to the ability to couple the resulting free radicals with a wide range of partners. This review discusses the recent advances in the radical Kharasch-type functionalization of organic molecules with OOR fragment including free-component radical couplings. The discussion has been structured by the type of the substrate of radical peroxidation: C(sp 3 )-H substrates; aromatic systems; compounds with unsaturated C-C or C-Het bonds.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
3
|
Shurupova OV, Tarasova ES, Rzhevskiy SA, Minaeva LI, Topchiy MA, Asachenko AF. Novel convenient 2-step synthesis of pyrido[1,2- a]indoles from pyrylium salts and o-bromoanilines. Org Biomol Chem 2024; 22:6742-6747. [PMID: 39105369 DOI: 10.1039/d4ob00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A novel convenient 2-step synthesis of substituted pyrido[1,2-a]indoles is developed starting from easily available pyrylium tetrafluoroborates and ortho-bromoanilines. A conversion of the pyrylium tetrafluoroborates to pyridinium ones followed by their palladium catalyzed intramolecular cyclization allows the formation of 24 examples of N-fused heterocycles. A one-pot two-stage cyclization procedure was developed. The utility of the methodology was demonstrated with the synthesis of new pyrido[1,2-a]indoles bearing different alkyl, aryl, chlorine, fluorine and methoxy substituents.
Collapse
Affiliation(s)
- Olga V Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Ekaterina S Tarasova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Sergey A Rzhevskiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Lidiya I Minaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Maxim A Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Andrey F Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Uppalabat T, Hassa N, Sawektreeratana N, Leowanawat P, Janthakit P, Nalaoh P, Promarak V, Soorukram D, Reutrakul V, Kuhakarn C. Cascade Oxidative Trifluoromethylthiolation and Cyclization of 3-Alkyl-1-(2-(alkynyl)phenyl)indoles. J Org Chem 2023; 88:5403-5419. [PMID: 37019432 DOI: 10.1021/acs.joc.2c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Persulfate-promoted radical cascade trifluoromethylthiolation and cyclization of 3-alkyl-1-(2-(alkynyl)phenyl)indoles with AgSCF3 were investigated. This protocol provides a novel route to CF3S-substituted indolo[1,2-a]quinoline-7-carbaldehydes and CF3S-substituted indolo[1,2-a]quinoline-7-methanone derivatives via the formation of the C-SCF3 bond and C-C bond and benzylic carbon oxidation in a single step. This reaction can accommodate a broad range of functional groups. The single-crystal X-ray diffraction data confirm the chemical structure of the product. A scale-up experiment and radical inhibition experiments were operated in the reaction system. Photophysical properties of some selected 5-((trifluoromethyl)thio)indolo[1,2-a]quinoline-7-carbaldehydes were studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Thikhamporn Uppalabat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Nattawoot Hassa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Natthapat Sawektreeratana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pattarapapa Janthakit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Zhang J, Zhang B, He J, Shi H, Du Y. Divergent synthesis of 2-methylthioindole and 2-unsubstituted indole derivatives mediated by SOCl 2 and dimethyl/diethyl sulfoxides. Org Biomol Chem 2022; 20:7886-7890. [PMID: 36169012 DOI: 10.1039/d2ob01580c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free divergent synthesis of indole compounds dependent on a reagent via intramolecular C(sp2)-H amination was described. The reaction of 2-vinylanilines with DMSO/SOCl2 at 70 °C was found to give 2-thiomethylindoles, while replacing DMSO with diethyl sulfoxide afforded 2-unsubstituted indoles in a highly selective manner.
Collapse
Affiliation(s)
- Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Beibei Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxin He
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haofeng Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Liu F, Lv L, Ma Y, Li Z. Copper‐Catalyzed Radical Difluoromethylation‐Peroxidation of Alkenes: Synthesis of β‐Difluoromethyl Peroxides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fan Liu
- Renmin University of China Chemistry CHINA
| | - Leiyang Lv
- Renmin University of China Department of Chemistry CHINA
| | | | - Zhiping Li
- Renmin University of China Chemistry CHINA
| |
Collapse
|
7
|
Ma Y, Lv L, Li Z. β-Perfluoroalkyl Peroxides as Fluorinated C3-Building Blocks for the Construction of Benzo[4,5]imidazo[1,2- a]pyridines. J Org Chem 2022; 87:1564-1573. [PMID: 34989560 DOI: 10.1021/acs.joc.1c02589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient and selective protocol for the synthesis of perfluoroalkyl-group-substituted benzo[4,5]imidazo[1,2-a]pyridines has been developed in which β-perfluoroalkyl peroxides act as novel fluorinated C3-building blocks to implement regioselective [3 + 3] annulation with 2-cyanomethyl benzimidazole under metal-free conditions. The application of the synthesized perfluoroalkylated BIPs as potent anticancer reagents versus the nonfluorinated ones demonstrated the biological utility of this method.
Collapse
Affiliation(s)
- Yangyang Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
8
|
Lou C, Wang X, Lv L, Li Z. Iron-Catalyzed Ring-Opening Reactions of Cyclopropanols with Alkenes and TBHP: Synthesis of 5-Oxo Peroxides. Org Lett 2021; 23:7608-7612. [PMID: 34528812 DOI: 10.1021/acs.orglett.1c02824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ring opening of cyclopropanols is rarely used in multicomponent reactions. Herein we report the three-component reaction of cyclopropanols with alkenes and tert-butyl hydroperoxide (TBHP) catalyzed by an iron catalyst. This protocol enables the incorporation of both the β-carbonyl fragment and a peroxy unit across the C═C double bond regioselectively, thus allowing an efficient, facile access to 5-oxo peroxides. Modification of the biologically active molecules and various downstream derivatizations of the peroxides are also demonstrated.
Collapse
Affiliation(s)
- Chenhao Lou
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xin Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|