1
|
Parida C, Pan SC. Organocatalytic Synthesis of Furan-Embedded Styrene Atropisomers. J Org Chem 2023; 88:13358-13370. [PMID: 37675791 DOI: 10.1021/acs.joc.3c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we report the first synthesis of furan-embedded styrene atropisomers via the reaction between 1-(aryl-ethynyl)-naphthalen-2-ol and γ-hydroxyenone. The reaction proceeds through in situ furan formation from γ-hydroxyenone. The styrene derivatives were obtained in moderate to good yields with high diastereoselectivities with a catalytic amount of PTSA. Few applications such as triazole formation and cross-coupling reactions have been demonstrated. A preliminary catalytic asymmetric version was also reported.
Collapse
Affiliation(s)
- Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Sun J, Zhang W, Song R, Yang D, Lv J. Divergent Coupling of ortho-Alkynylnaphthols and Benzofurans: [4 + 2] Cycloaddition and Friedel-Crafts Reaction. J Org Chem 2023; 88:442-454. [PMID: 36520642 DOI: 10.1021/acs.joc.2c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catalytic direct [4 + 2] cycloaddition reactions and Friedel-Crafts reactions of ortho-alkynylnaphthols with benzofurans have been developed, affording functionalized hydrobenzofuro[3,2-b]chromans and hydroarylation products, respectively, in high yields with high chemoselectivity.
Collapse
Affiliation(s)
- Jiaying Sun
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenxuan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Corcoran JC, Guo R, Xia Y, Wang YM. Vinyl cation-mediated intramolecular hydroarylation of alkynes using pyridinium reagents. Chem Commun (Camb) 2022; 58:11523-11526. [PMID: 36149344 PMCID: PMC9588717 DOI: 10.1039/d2cc03794g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Once considered to be exotic species of limited synthetic utility, vinyl cations have recently been shown to be highly versatile intermediates in a variety of processes. Here, we report a method for the synthesis of aryl-substituted benzocycloheptenes and -hexenes using the hydrotriflate salt of an electron-poor pyridine as a uniquely efficient proton source for a vinyl cation mediated Friedel-Crafts cyclization. The mild conditions made possible by this reagent allowed a range of simple and functionalized alkynes bearing pendant aryl groups to serve as suitable substrates for this scalable and convenient protocol.
Collapse
Affiliation(s)
- James C Corcoran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Rui Guo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yue Xia
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
4
|
Zhang W, Sun J, Lian Z, Song R, Yang D, Lv J. Enantioselective Friedel-Crafts Reaction of 2-Alkynyphenols with Aromatic Ethers by Chiral Brønsted Acid Catalysis. J Org Chem 2022; 87:9100-9111. [PMID: 35749311 DOI: 10.1021/acs.joc.2c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report chiral strong Brønsted acid-catalyzed enantioselective Friedel-Crafts reaction of 2-alkynyphenols with aromatic ethers. The reaction affords the corresponding axially chiral styrenes in up to 91% yield and 97% ee.
Collapse
Affiliation(s)
- Wenxuan Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jiaying Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhendong Lian
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Zhang W, Song R, Yang D, Lv J. Construction of Axially Chiral Styrenes Linking an Indole Moiety by Chiral Phosphoric Acid. J Org Chem 2022; 87:2853-2863. [DOI: 10.1021/acs.joc.1c02750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxuan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|