1
|
Zhao Y, Yan H, Zhang Y, Zhou T, Tian M, Zhang C, Yuan S, Qiu H, He L, Zhang M. Catalytic asymmetric intramolecular propargylation of cyclopropanols to access the cuparane core. Chem Sci 2024; 15:10963-10968. [PMID: 39027279 PMCID: PMC11253112 DOI: 10.1039/d4sc02504k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/20/2024] Open
Abstract
The catalytic asymmetric propargylation of enol(ate) intermediates is a well-established method for the synthesis of α-propargyl-substituted carbonyl compounds. However, the propargylation of homo-enol(ate) or its equivalents for the synthesis of β-propargyl-substituted carbonyl compounds remains underdeveloped. A catalytic enantioselective decarboxylative intramolecular propargylation of cyclopropanols has been developed using a PyBox-complexed copper catalyst. This reaction offers an effective approach to assemble a cyclopentanone skeleton bearing an all-carbon quaternary stereogenic center and an adjacent quaternary gem-dimethyl carbon center, which is the core scaffold of the naturally occurring cuparenoids. Key to the success of this protocol is the use of a new structurally optimized PyBox ligand. This study represents the first example of catalytic asymmetric intramolecular propargylation of cyclopropanols.
Collapse
Affiliation(s)
- Yankun Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Hongya Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Yulian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Tao Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Mengxing Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Chongzhou Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Shan Yuan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| |
Collapse
|
2
|
Zhang X, Cui S, Wei S, Zhao M, Liu X, Zhang G. Nickel-Catalyzed Deaminative Alkyl-Alkyl Cross-Coupling of Katritzky Salts with Cyclopropanols: Merging C-N and C-C Bond Activation. Org Lett 2024; 26:2114-2118. [PMID: 38437731 DOI: 10.1021/acs.orglett.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Herein, we report a general and practical nickel-catalyzed deaminative alkylation of Katritzky salts with cyclopropyl alcohols via merging C-N and C-C bond activation. This protocol enables the formation of an alkyl-alkyl bond along with the generation of a versatile ketone functional group in a single operation, thus providing a convenient approach for accessing β-alkyl ketones. This reaction is distinguished by its high functional group tolerance, broad substrate scope, and efficient late-stage derivatization of complex bioactive molecules.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Shilin Cui
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Shuxin Wei
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Mengge Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University (HNU), Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Hou J, Li X, Yan K, Zhang L, Loh TP, Xie P. Uracil-Cu(i) catalyst: allylation of cyclopropanols with Morita-Baylis-Hillman alcohols under water-tolerant conditions. Chem Sci 2024; 15:1143-1149. [PMID: 38239700 PMCID: PMC10793597 DOI: 10.1039/d3sc04890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Inspired by the high affinity of copper with DNA and RNA, a uracil-copper catalytic system was developed to promote ring-opening allylation of cyclopropanols with allylic alcohols under water-tolerant conditions. A new C-OH bond-breaking model can well resolve the trade-off between the need for acidic activators for C(allyl)-OH bond cleavage and the demand for strong basic conditions for generating homoenolates. Therefore, Morita-Baylis-Hillman alcohols, rather than their pre-activated versions, could be incorporated directly into dehydrative cross-coupling with cyclopropanols delivering water as the only by-product. A variety of functionalized δ,ε-unsaturated ketones were obtained in good-to-high yield with high E-selectivity.
Collapse
Affiliation(s)
- Jingwei Hou
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xiaohong Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kaiyu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University Tianjin 300384 China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
4
|
Zhan JL, Zhu L, Bai JN, Liu JB, Zhang SH, Xie YQ, Hu BM, Wang Y, Han WJ. Transition metal-free [3 + 3] annulation of cyclopropanols with β-enamine esters to assemble nicotinate derivatives. Org Biomol Chem 2023; 21:8984-8988. [PMID: 37937487 DOI: 10.1039/d3ob01662e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A metal-free and efficient approach for the synthesis of structurally important nicotinates through 4-HO-TEMPO-mediated [3 + 3] annulation of cyclopropanols with β-enamine esters is presented. This protocol features high atom efficiency, green waste, simple operation and broad substrate scope. Moreover, the experiments of gram-scale synthesis and recovery of oxidants make this strategy more sustainable and practical.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Jia-Nan Bai
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Jian-Bo Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Shi-Han Zhang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yao-Qiang Xie
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Bo-Mei Hu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Yang Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Wen-Jun Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| |
Collapse
|
5
|
Wu H, Qu B, Nguyen T, Lorenz JC, Buono F, Haddad N. Recent Advances in Non-Precious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jon C. Lorenz
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
6
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium-Catalyzed Stagewise Strain-Release-Driven C-C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022; 61:e202200052. [PMID: 35332648 DOI: 10.1002/anie.202200052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/20/2022]
Abstract
A palladium-catalyzed chemoselective coupling of readily available bicyclo[1.1.1]pentanyl alcohols (BCP-OH) with various halides is reported, which offers expedient approaches to a wide range of cyclobutanone and β,γ-enone skeletons via single or double C-C activation. The chemistry shows a broad substrate scope in terms of both the range of BCP-OH and halides including a series of natural product derivatives. Moreover, dependency of reaction chemodivergence on base additive has been investigated through experimental and density functional theory (DFT) studies, which is expected to significantly enrich the reaction modes and increase the synthetic potential of BCP-OH in preparing more complex molecules.
Collapse
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yinan Ai
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Chunying Duan
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yue Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Kitabayashi A, Mizushima S, Higashida K, Yasuda Y, Shimizu Y, Sawamura M. Insights into the Mechanism of Enantioselective Copper‐Catalyzed Ring‐Opening Allylic Alkylation of Cyclopropanols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akito Kitabayashi
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Sho Mizushima
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Kosuke Higashida
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yuto Yasuda
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Yohei Shimizu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Department of Chemistry Faculty of Science Hokkaido University Kita 10 Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
8
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium‐Catalyzed Stagewise Strain‐Release‐Driven C−C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yinan Ai
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Gang Lu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Chunying Duan
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yue Ma
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
9
|
Hou L, Huang W, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylation of Cyclopropanol with Benzyl Bromide for Multisubstituted Cyclopentenone Synthesis. Org Lett 2022; 24:2699-2704. [PMID: 35389666 DOI: 10.1021/acs.orglett.2c00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we reported a Ni-catalyzed carbonylation of cyclopropanol with benzyl bromide to afford multisubstituted cyclopentenone under 1 atm of CO. The reaction proceeds through cascade carbonylation of benzyl bromides, followed by generation of nickel homoenolate from cyclopropanols via β-C elimination to afford 1,4-diketones, which undergoes intramolecular Aldol condensation to furnish highly substituted cyclopentenone derivatives in moderate to good yields. The reaction exhibits high functional group tolerance with broad substrate scope.
Collapse
Affiliation(s)
- Liting Hou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Sekiguchi Y, Yoshikai N. Zinc-Mediated Hydroxyallylation of Aldehydes with Cyclopropanols: Direct Access to Vicinal anti- sec, tert-Diols via Enolized Homoenolates. Org Lett 2022; 24:960-965. [PMID: 35030003 DOI: 10.1021/acs.orglett.1c04331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct and diastereoselective synthesis of vicinal anti-sec,tert-diols has been achieved by zinc-mediated α-hydroxyallylation of aldehydes with cyclopropanols. The reaction features the action of the zinc-enolized homoenolate as a γ-oxyallyl nucleophile toward the carbonyl electrophile. The diastereoselectivity of the present reaction is ascribed to the strong preference for a chelated (Z)-configuration of the enolized homoenolate as well as the bicyclic chairlike transition state it forms with the aldehyde, where the aldehyde substituent prefers to occupy the pseudoaxial position.
Collapse
Affiliation(s)
- Yoshiya Sekiguchi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Zhang Q, Zhou S, Shi C, Yin L. Catalytic Asymmetric Allylic Substitution with Copper(I) Homoenolates Generated from Cyclopropanols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Si‐Wei Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chang‐Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Zhang Q, Zhou SW, Shi CY, Yin L. Catalytic Asymmetric Allylic Substitution with Copper(I) Homoenolates Generated from Cyclopropanols. Angew Chem Int Ed Engl 2021; 60:26351-26356. [PMID: 34617380 DOI: 10.1002/anie.202110709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Indexed: 12/23/2022]
Abstract
By using copper(I) homoenolates as nucleophiles, which are generated through the ring-opening of 1-substituted cyclopropane-1-ols, a catalytic asymmetric allylic substitution with allyl phosphates is achieved in high to excellent yields with high enantioselectivity. Both 1-substituted cyclopropane-1-ols and allylic phosphates enjoy broad substrate scopes. Remarkably, various functional groups, such as ether, ester, tosylate, imide, alcohol, nitro, and carbamate are well tolerated. Moreover, the present method is nicely extended to the asymmetric construction of quaternary carbon centers. Some control experiments argue against a radical-based reaction mechanism and a catalytic cycle based on a two-electron process is proposed. Finally, the synthetic utilities of the product are showcased by means of the transformations of the terminal olefin group and the ketone group.
Collapse
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Si-Wei Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chang-Yun Shi
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
13
|
Sekiguchi Y, Yoshikai N. Zinc-Catalyzed β-Functionalization of Cyclopropanols via Enolized Homoenolate. J Am Chem Soc 2021; 143:18400-18405. [PMID: 34714060 DOI: 10.1021/jacs.1c10109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report herein a zinc-catalyzed β-allylation of cyclopropanols with Morita-Baylis-Hillman (MBH) carbonates with retention of the cyclopropane ring. The reaction is promoted by a zinc aminoalkoxide catalyst, affording cyclopropyl-fused α-alkylidene-δ-valerolactone derivatives in moderate to good yields. Mechanistic experiments suggest that the present reaction does not proceed via direct β-C-H cleavage of the cyclopropanol, but involves zinc homoenolate and its enolization to generate a key bis-nucleophilic species. α-Allylation of this "enolized homoenolate" with MBH carbonate would be followed by regeneration of the cyclopropane ring and irreversible lactonization. The enolized homoenolate mechanism has also been proven to allow for β-functionalization with alkylidenemalononitrile as the reaction partner. A sequence of the present reaction and known cyclopropanol transformation provides an opportunity to transform a simple cyclopropanol into α,β- or β,β-difunctionalized ketones.
Collapse
Affiliation(s)
- Yoshiya Sekiguchi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
14
|
Lou C, Wang X, Lv L, Li Z. Iron-Catalyzed Ring-Opening Reactions of Cyclopropanols with Alkenes and TBHP: Synthesis of 5-Oxo Peroxides. Org Lett 2021; 23:7608-7612. [PMID: 34528812 DOI: 10.1021/acs.orglett.1c02824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ring opening of cyclopropanols is rarely used in multicomponent reactions. Herein we report the three-component reaction of cyclopropanols with alkenes and tert-butyl hydroperoxide (TBHP) catalyzed by an iron catalyst. This protocol enables the incorporation of both the β-carbonyl fragment and a peroxy unit across the C═C double bond regioselectively, thus allowing an efficient, facile access to 5-oxo peroxides. Modification of the biologically active molecules and various downstream derivatizations of the peroxides are also demonstrated.
Collapse
Affiliation(s)
- Chenhao Lou
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xin Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|