1
|
Bisoyi A, Tripathy AR, Behera A, Yatham VR. α-C(sp 3)-H (Hetero)Arylation of Thioethers Enabled by Photoexcited Triplet Ketone Catalysis. J Org Chem 2024; 89:12540-12546. [PMID: 39163310 DOI: 10.1021/acs.joc.4c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We report herein α-C(sp3)-H (hetero)arylation of thioethers enabled by dual nickel and photoexcited triplet ketone catalysis. The mild reaction conditions of this protocol tolerate a variety of functional groups and further facilitate the late-stage functionalization of biologically relevant molecules to afford corresponding products in moderate to good yields. Preliminary mechanistic studies suggest that the generation of the α-thioalkyl radical takes place through a hydrogen atom transfer (HAT) event, which is involved in the rate-limiting step and in the nickel cycle, the reaction of the α-thioalkyl radical with Ni(0)Ln catalyst followed by oxidative addition of aryl bromide is the dominating pathway. Furthermore, the heteroaromatic benzylic thioethers can also be achieved from the corresponding reduced 4-cyano pyridine derivatives in the presence of a ketone catalyst through a radical-radical coupling reaction without metal. The increased yield of the products in the presence of DABCO might indicate a higher rate of α-thioalkyl radical formation from thioethers through the HAT event by DABCO radical cation.
Collapse
Affiliation(s)
- Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Amit Behera
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
2
|
Li LX, Li CR, Guo X, Zhang Z. Photoredox/Copper-Catalyzed One-Pot Aminoalkylation/Cyclization of Alkenes with Primary Amines to Synthesize Polysubstituted γ-Lactams. Org Lett 2024; 26:845-849. [PMID: 38251862 DOI: 10.1021/acs.orglett.3c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Visible-light-driven chemical transformation has emerged as a powerful tool for the synthesis of γ-lactams. However, during this transformation, the α-bromoimides need to be pre-prepared. Herein, we report a photoreodox/copper-catalyzed one-pot three-component reaction of alkenes with primary amines for the construction of γ-lactams. In this transformation, the orthoquinones were generated via a photocatalytic pathway, followed by attack by Cu-amido complexes and intramolecular cyclization to give the γ-lactams. This method represents a simple synthetic route displaying broad functional group tolerance, including substrates bearing alcohols, ketones, heterocycles, esters, halides, alkynes, nitriles, ethers, etc.
Collapse
Affiliation(s)
- Li-Xin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| | - Chen-Rui Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xu Guo
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| |
Collapse
|
3
|
Cheng SY, Liao JB, Lin YM, Gong L. Photochemical Synthesis of S,N,O-Containing Polyheterocycles via an α-C(sp 3)-H Functionalization/Radical Cyclization Cascade. Org Lett 2023; 25:6566-6570. [PMID: 37646425 DOI: 10.1021/acs.orglett.3c02423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A highly effective approach based on an organophotocatalytic α-C(sp3)-H functionalization/radical cyclization cascade has been developed. This method enables the synthesis of various tricyclic heterocycles containing S, O, and N atoms with excellent site selectivity and diastereoselectivity. Mechanistic investigations have confirmed that the reaction involves photoredox-triggered C(sp3)-H cleavage followed by a radical cyclization and aromatization process. These findings are expected to pave the way for developing cost-effective tandem radical reactions and synthesizing heterocyclic drugs.
Collapse
Affiliation(s)
- Shi-Yan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Bin Liao
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
4
|
Rourke MJ, Wang CT, Schull CR, Scheidt KA. Acyl Azolium-Photoredox-Enabled Synthesis of β-Keto Sulfides. ACS Catal 2023; 13:7987-7994. [PMID: 37969469 PMCID: PMC10651059 DOI: 10.1021/acscatal.3c01558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
α-Heteroatom functionalization is a key strategy for C-C bond formation in organic synthesis, as exemplified by the addition of a nucleophile to electrophilic functional groups, such as iminium ions; oxocarbenium ions; and their sulfur analogues, sulfenium ions. We envisioned a photoredox-enabled radical Pummerer-type reaction realized through the single-electron oxidation of a sulfide. Following this oxidative event, α-deprotonation would afford α-thio radicals that participate in radical-radical coupling reactions with azolium-bound ketyl radicals, thereby accessing a commonly proposed mechanistic intermediate of the radical-radical coupling en route to functionalized additive Pummerer products. This system provides a complementary synthetic approach to highly functionalized sulfurous products, including modification of methionine residues in peptides, and beckons further exploration in C-C bond formations previously limited in the standard two-electron process.
Collapse
Affiliation(s)
- Michael J Rourke
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles T Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cullen R Schull
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Heteroarylation of Bicyclo[1.1.1]pentane Derivatives. Org Lett 2023; 25:2053-2057. [PMID: 36929825 DOI: 10.1021/acs.orglett.3c00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Herein, we report the decarboxylative Minisci heteroarylation of bicyclo[1.1.1]pentane (BCP) and 2-oxabicyclo[2.1.1]hexane (oBCH) derivatives at the bridge positions. In an operationally simple, photocatalyst-free process, free bridge carboxylic acids are directly coupled with nonprefunctionalized heteroarenes to provide rare examples of polysubstituted BCP and oBCH derivatives in synthetically useful yields. Additionally, the impact of the BCP core on the physicochemical properties of a representative example compared to those of its all-aromatic ortho- and meta-substituted analogues is evaluated.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.,Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Nicholas D Measom
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Darren L Poole
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| |
Collapse
|
6
|
Ryckaert B, Demeyere E, Degroote F, Janssens H, Winne JM. 1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures. Beilstein J Org Chem 2023; 19:115-132. [PMID: 36761474 PMCID: PMC9907017 DOI: 10.3762/bjoc.19.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
This review covers the synthetic applications of 1,4-dithianes, as well as derivatives thereof at various oxidation states. The selected examples show how the specific heterocyclic reactivity can be harnessed for the controlled synthesis of carbon-carbon bonds. The reactivity is compared to and put into context with more common synthetic building blocks, such as 1,3-dithianes and (hetero)aromatic building blocks. 1,4-Dithianes have as yet not been investigated to the same extent as their well-known 1,3-dithiane counterparts, but they do offer attractive transformations that can find good use in the assembly of a wide array of complex molecular architectures, ranging from lipids and carbohydrates to various carbocyclic scaffolds. This versatility arises from the possibility to chemoselectively cleave or reduce the sulfur-heterocycle to reveal a versatile C2-synthon.
Collapse
Affiliation(s)
- Bram Ryckaert
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Ellen Demeyere
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Frederick Degroote
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| |
Collapse
|
7
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
8
|
Matsukuma K, Tayu M, Yashiro Y, Yamaguchi T, Ohrui S, Saito N. A Photoredox/Sulfide Dual Catalysis System That Uses Sulfide Radical Cations to Promote Alkene Chlorotrifluoromethylation. Chem Pharm Bull (Tokyo) 2023; 71:695-700. [PMID: 37661375 DOI: 10.1248/cpb.c23-00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Sulfides and their derivatives are among the most important class of reagent in synthetic chemistry. Despite the importance of such compounds, the use of sulfide radical cations in synthetic chemistry is underdeveloped. To address this issue, herein, we describe alkene chlorotrifluoromethylation reactions promoted by photoredox/sulfide dual catalysis systems, which involves sulfide radical cations generated through the oxidation of sulfides by a photoredox catalyst. The high functional group tolerance of this chemistry was demonstrated using natural products and drug molecules as substrate alkenes.
Collapse
|
9
|
Tan Z, Zhu S, Liu Y, Feng X. Photoinduced Chemo‐, Site‐ and Stereoselective α‐C(sp
3
)−H Functionalization of Sulfides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenda Tan
- Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 China
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Shibo Zhu
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yangbin Liu
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaoming Feng
- Institute of Chemical Biology Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
10
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
11
|
Tan Z, Zhu S, Liu Y, Feng X. Photoinduced Chemo-, Site- and Stereoselective α-C(sp 3 )-H Functionalization of Sulfides. Angew Chem Int Ed Engl 2022; 61:e202203374. [PMID: 35445505 DOI: 10.1002/anie.202203374] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
The ubiquity of sulfur-containing molecules in biologically active natural products and pharmaceuticals has long attracted synthetic chemists to develop efficient strategies towards their synthesis. The strategy of direct α-C(sp3 )-H modification of sulfides provides a streamlining access to complex sulfur-containing molecules. Herein, we report a photoinduced chemo-, site- and stereoselective α-C(sp3 )-H functionalization of sulfides using isatins as the photoredox reagent and coupling partner catalyzed by a chiral gallium(III)-N,N'-dioxide complex. The reaction proceeds through a verified single-electron transfer (SET) mechanism with high efficiency, excellent functional group tolerance, as well as a broad substrate scope. Importantly, this cross-coupling protocol is highly selective for the direct late-stage functionalization of methionine-related peptides, regardless of the inherent structural similarity and complexity of diverse residues.
Collapse
Affiliation(s)
- Zhenda Tan
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shibo Zhu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
12
|
Bell JD, Robb I, Murphy JA. Highly selective α-aryloxyalkyl C–H functionalisation of aryl alkyl ethers. Chem Sci 2022; 13:12921-12926. [DOI: 10.1039/d2sc04463c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/15/2022] [Indexed: 11/21/2022] Open
Abstract
We report highly selective photocatalytic functionalisations of alkyl groups in aryl alkyl ethers with a range of electron-poor alkenes using an acridinium catalyst with a phosphate base and irradiation with visible light (456 nm or 390 nm).
Collapse
Affiliation(s)
- Jonathan D. Bell
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Iain Robb
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - John A. Murphy
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
13
|
Rieder S, Meléndez C, Dénès F, Jangra H, Mulliri K, Zipse H, Renaud P. Radical chain monoalkylation of pyridines. Chem Sci 2021; 12:15362-15373. [PMID: 34976357 PMCID: PMC8635225 DOI: 10.1039/d1sc02748d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
The monoalkylation of N-methoxypyridinium salts with alkyl radicals generated from alkenes (via hydroboration with catecholborane), alkyl iodides (via iodine atom transfer) and xanthates is reported. The reaction proceeds under neutral conditions since no acid is needed to activate the heterocycle and no external oxidant is required. A rate constant for the addition of a primary radical to N-methoxylepidinium >107 M-1 s-1 was experimentally determined. This rate constant is more than one order of magnitude larger than the one measured for the addition of primary alkyl radicals to protonated lepidine demonstrating the remarkable reactivity of methoxypyridinium salts towards radicals. The reaction has been used for the preparation of unique pyridinylated terpenoids and was extended to a three-component carbopyridinylation of electron-rich alkenes including enol esters, enol ethers and enamides.
Collapse
Affiliation(s)
- Samuel Rieder
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Camilo Meléndez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Fabrice Dénès
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Harish Jangra
- Department of Chemistry, LMU München Butenandtstrasse 5-13 81377 München Germany
| | - Kleni Mulliri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Hendrik Zipse
- Department of Chemistry, LMU München Butenandtstrasse 5-13 81377 München Germany
| | - Philippe Renaud
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|