1
|
Yang Z, Xu J, Sun Y, Li X, Jia B, Du Y. Preparation of a benziodazole-type iodine(III) compound and its application as a nitrating reagent for synthesis of furazans via a copper-catalyzed cascade process. Commun Chem 2024; 7:155. [PMID: 38982259 PMCID: PMC11233585 DOI: 10.1038/s42004-024-01238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
The existing hypervalent I(III) reagents bearing ONO2 group are limited in types and their applications primarily focused on the nitrooxylation reactions featuring a fully-exo fashion. Herein, a benziodazole-type O2NO-I(III) compound was prepared and its reaction with β-monosubstituted enamines in the presence of CuI could trigger a radical nitration/cyclization/dehydration cascade to provide a series of less explored but biologically interesting furazan heterocycles. Mechanistically, the benziodazole-type O2NO-I(III) compound acts as a nitrating reagent and incorporates its NO moiety into the final furazan product in a fully-endo model, a process of which was proposed to involve nitration, cyclization and dehydration.
Collapse
Affiliation(s)
- Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jun Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Bohan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Liu Y, Choy PY, Wang D, Wu M, Tang Q, He X, Shang Y, Kwong FY. Cascade Annulation Strategy for Expeditious Assembly of Hydroxybenzo[ c]chromen-6-ones and Their Photophysical Property Studies. J Org Chem 2023; 88:16609-16620. [PMID: 37978943 DOI: 10.1021/acs.joc.3c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A 1,8-diazabicyclo[5.4.0]undec-7-ene-promoted cascade double-annulation of ortho-alkynyl quinone methide (in situ generated from modular propargylamine) for constructing of 2-aryl-4-hydroxybenzo[c]chromen-6-ones is developed. This synthetic strategy offers remarkable operational simplicity as it allows the use of benchtop-grade solvents without the need for predrying measures and inert atmosphere protection. Additionally, it demonstrates good functional group compatibility. The photophysical properties of these compounds were also examined, revealing bright fluorescence with high quantum yields.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong, P. R. China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Fuk Yee Kwong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong, P. R. China
| |
Collapse
|
3
|
Kumar G, Kumar R, Mazumder A, Salahuddin, Kumar U. Synthetic approaches and applications of an underprivileged 1,2,5-oxadiazole moiety: A review. Chem Biol Drug Des 2023; 102:907-920. [PMID: 37277317 DOI: 10.1111/cbdd.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
1,2,5-oxadiazole belongs to five-membered heterocyclic compounds with two nitrogen and one oxygen atom. In comparison with other heterocyclic moieties, 1,2,5-oxadiazoles moiety is considered as underprivileged as it attracted little attention of the researchers although lot of scopes and possible applications in medicinal, material and agriculture science. 1,2,5-oxadiazole and its derivatives have been reported as good pharmacophores as carbonic anhydrase inhibitors, antibacterial, vasodilating agents, antimalarial, anticancer, etc. In the presented manuscript, we reviewed granted patents and different synthetic strategies which have been reported for the synthesis of 1,2,5-oxadiazoles such as cycloaddition, dimerization, cyclodehydration, condensation, thermolysis, nitration, oxidation and ring-conversion. These synthetic methods have also been analysed for their merits and demerits. The manuscript also highlighted various applications of 1,2,5-oxadiazole and its derivatives. We hope that researchers across the scientific streams will be benefitted from the presented review articles for designing their work related to 1,2,5-oxadiazoles.
Collapse
Affiliation(s)
- Greesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Upendra Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| |
Collapse
|
4
|
Ma Q, Zhang S, Yuan Y, Ding H, Li Y, Sun Z, Yuan Y, Jia X. Multifunctionalization of sp3 C‐H Bond of Tetrahydroisoquinolines through C‐H Activation Relay (CHAR) Using α‐Cyanotetrahydroisoquinolines as the Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiyuan Ma
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Shuwei Zhang
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuan Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Han Ding
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuemei Li
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Zheng Sun
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yu Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Xiaodong Jia
- Yangzhou University School of Chemistry and Chemical Engineering, Yangzhou University 180 Siwangting Road 225002 Yangzhou CHINA
| |
Collapse
|
5
|
Km K, Kumar S, Kumar A, Kant R, Chintakunta R. Palladium‐Catalyzed Intramolecular C‐H Heteroarylation to Access Fused Tricyclic Oxazolo[4,5‐c]Quinolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kajol Km
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Sujeet Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Amit Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Ruchir Kant
- CSIR-CDRI: Central Drug Research Institute Medicinal & Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| | - Ramesh Chintakunta
- CSIR-CDRI: Central Drug Research Institute Medicinal and Process Chemistry Division CSIR-CDRI, Lucknow, UP, India 226031 LUCKNOW INDIA
| |
Collapse
|
6
|
Das J, Borah BJ, Das SK. Construction of Benzosultam‐Containing Fused‐ and Linked‐Biheterocycles by a Cascade Double Nucleophilic Cyclization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonali Das
- Tezpur University Chemical Sciences Tezpur 784028 Tezpur INDIA
| | | | - Sajal Kumar Das
- Tezpur University Chemical Sciences Napaam 784028 Tezpur INDIA
| |
Collapse
|
7
|
Qian YE, Zheng L, Zhao QL, Xiao JA, Chen K, Xiang HY, Yang H. TBN-triggered, manipulable annulations of o-hydroxyarylenaminones for divergent syntheses of oximinochromanones and oximinocoumaranones. Chem Commun (Camb) 2021; 57:12285-12288. [PMID: 34730570 DOI: 10.1039/d1cc05389b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Divergent synthesis provides an indispensable route to rapid acquisition of structurally diverse chemical scaffolds from identical starting materials. Herein, we describe unprecedented divergent annulations of o-hydroxyarylenaminones promoted by tert-butyl nitrite (TBN) under mild conditions. Two different types of benzo-oxa-heterocycle, including oximinochromanones and oximinocoumaranones, were smoothly assembled with a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|