1
|
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI 2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024; 29:4710. [PMID: 39407638 PMCID: PMC11477539 DOI: 10.3390/molecules29194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
2
|
Zhao X, Ding H, Guo A, Zhong X, Zhou S, Wang G, Liu Y, Ishiwata A, Tanaka K, Cai H, Liu XW, Ding F. Zinc(ii)-mediated stereoselective construction of 1,2- cis 2-azido-2-deoxy glycosidic linkage: assembly of Acinetobacter baumannii K48 capsular pentasaccharide derivative. Chem Sci 2024; 15:12889-12899. [PMID: 39148796 PMCID: PMC11322977 DOI: 10.1039/d4sc03449j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
The capsular polysaccharide (CPS) is a major virulence factor of the pathogenic Acinetobacter baumannii and a promising target for vaccine development. However, the synthesis of the 1,2-cis-2-amino-2-deoxyglycoside core of CPS remains challenging to date. Here we develop a highly α-selective ZnI2-mediated 1,2-cis 2-azido-2-deoxy chemical glycosylation strategy using 2-azido-2-deoxy glucosyl donors equipped with various 4,6-O-tethered groups. Among them the tetraisopropyldisiloxane (TIPDS)-protected 2-azido-2-deoxy-d-glucosyl donor afforded predominantly α-glycoside (α : β = >20 : 1) in maximum yield. This novel approach applies to a wide acceptor substrate scope, including various aliphatic alcohols, sugar alcohols, and natural products. We demonstrated the versatility and effectiveness of this strategy by the synthesis of A. baumannii K48 capsular pentasaccharide repeating fragments, employing the developed reaction as the key step for constructing the 1,2-cis 2-azido-2-deoxy glycosidic linkage. The reaction mechanism was explored with combined experimental variable-temperature NMR (VT-NMR) studies and mass spectroscopy (MS) analysis, and theoretical density functional theory calculations, which suggested the formation of covalent α-C1GlcN-iodide intermediate in equilibrium with separated oxocarbenium-counter ion pair, followed by an SN1-like α-nucleophilic attack most likely from separated ion pairs by the ZnI2-activated acceptor complex under the influence of the 2-azido gauche effect.
Collapse
Affiliation(s)
- Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Aoxin Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University Guangzhou 510006 China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| |
Collapse
|
3
|
Xiao Q, Fang S, Ao J, Zhao X, Huang C, Liu Y, Nie Y, Ishiwata A, Tanaka K, Deng W, Ding F. B(C 6F 5) 3-Catalyzed Stereoselective 1,2- cis Arabinofuranosylation with a Conformationally Constrained Donor. ACS OMEGA 2024; 9:11969-11975. [PMID: 38497025 PMCID: PMC10938590 DOI: 10.1021/acsomega.3c09761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Compared with stereoselective glycosylation methods mainly addressed on the preparation of pyranose glycosides, the furanosylation has been more limited, especially for the 1,2-cis arabinofuranosylation. Herein, we report a novel stereoselective 1,2-cis-arabinofuranosylation strategy using a conformationally restricted 3,5-O-xylylene-protected arabinofuranosyl donor on activation with B(C6F5)3 for desired targets in moderate to excellent yields and β-stereoselectivity. The effectiveness of the 1,2-cis-arabinofuranosylation strategy was demonstrated successfully with various acceptors, including carbohydrate alcohols.
Collapse
Affiliation(s)
- Qian Xiao
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Sixian Fang
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoya Zhao
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Cai Huang
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuhua Liu
- School
of Physics and Electronic Engineering, Guangzhou
University, Guangzhou 510006, China
| | - Yichu Nie
- Translational
Medicine Research Institute, First People’s
Hospital of Foshan, Foshan 528000, China
| | - Akihiro Ishiwata
- RIKEN
Cluster for Pioneering Research, Wako, Saitama 3510198, Japan
| | - Katsunori Tanaka
- RIKEN
Cluster for Pioneering Research, Wako, Saitama 3510198, Japan
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, Tokyo 152-8552, Japan
| | - Wenbin Deng
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School
of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Ishiwata A, Tanaka K, Ito Y, Cai H, Ding F. Recent Progress in 1,2- cis glycosylation for Glucan Synthesis. Molecules 2023; 28:5644. [PMID: 37570614 PMCID: PMC10420028 DOI: 10.3390/molecules28155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/13/2023] Open
Abstract
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Zhong X, Wang G, Li F, Fang S, Zhou S, Ishiwata A, Tonevitsky AG, Shkurnikov M, Cai H, Ding F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023; 15:1615. [PMID: 37376063 DOI: 10.3390/pharmaceutics15061615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
β-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals and microorganisms and possesses various biological activities, including anti-inflammatory, antioxidant, and anti-tumor properties. More recently, there has been mounting proof that β-glucan functions as a physiologically active "biological response modulator (BRM)", promoting dendritic cell maturation, cytokine secretion, and regulating adaptive immune responses-all of which are directly connected with β-glucan-regulated glucan receptors. This review focuses on the sources, structures, immune regulation, and receptor recognition mechanisms of β-glucan.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Fu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Sixian Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Saitama, Japan
| | - Alexander G Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Chemical synthesis of oligosaccharides and their application in new drug research. Eur J Med Chem 2023; 249:115164. [PMID: 36758451 DOI: 10.1016/j.ejmech.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.
Collapse
|
7
|
Ma Z, Hu Y, Li X, Liu R, Xia E, Xu P, Yang Y. Stereoselective synthesis of α-glucosides with glucosyl (Z)-Ynenoates as donors. Carbohydr Res 2023; 523:108710. [PMID: 36370627 DOI: 10.1016/j.carres.2022.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
A SPhosAuNTf2-promoted DMF-modulated glycosylation approach with glycosyl (Z)-ynenoates as donors was developed for highly α-selective synthesis of various linkage types of α-glucans. The substituent groups were also found to play a significant role in the α-selective glucosylation reactions. The glycosylation approach was effectively applied to the stereospecific synthesis of the α-1,6-linked triglucoside.
Collapse
Affiliation(s)
- Zhi Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Hu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rongkun Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - E Xia
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
8
|
Zhou S, Ao J, Guo A, Zhao X, Deng N, Wang G, Yang Q, Ishiwata A, Liu XW, Li Q, Cai H, Ding F. ZnI 2-Mediated β-Galactosylation of C2-Ether-Type Donor. Org Lett 2022; 24:8025-8030. [DOI: 10.1021/acs.orglett.2c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371, Singapore
| | - Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Nan Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qixuan Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371, Singapore
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
9
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Feng Y, Guo T, Yang H, Liu G, Zhang Q, Zhang S, Chai Y. Ni(II)-Catalyzed Regio- and Stereoselective O-Alkylation for the Construction of 1,2- cis-Glycosidic Linkages. Org Lett 2022; 24:6282-6287. [PMID: 35981295 DOI: 10.1021/acs.orglett.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal-catalyzed O-alkylation for the regio- and stereoselective construction of 1,2-cis-glycosidic linkages is presented. With nonprecious and readily available Ni(II) as a catalyst, 1,2-cis-glycosides were obtained via O-alkylation of 1,2-carbohydrate diols that can be accessed in a small number of steps. The tedious design of protecting groups or anomeric leaving groups could be avoided with this method. The strategy was applied for the efficient preparation of an important commercialized glycosidic compatible solute GG, its derivative MGG, and a branched α-glucan.
Collapse
Affiliation(s)
- Yingle Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Tiantian Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Han Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Guoqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
11
|
Zhong X, Zhou S, Ao J, Guo A, Xiao Q, Huang Y, Zhu W, Cai H, Ishiwata A, Ito Y, Liu XW, Ding F. Zinc(II) Iodide-Directed β-Mannosylation: Reaction Selectivity, Mode, and Application. J Org Chem 2021; 86:16901-16915. [PMID: 34797079 DOI: 10.1021/acs.joc.1c02091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A direct, efficient, and versatile glycosylation methodology promises the systematic synthesis of oligosaccharides and glycoconjugates in a streamlined fashion like the synthesis of medium to long-chain nucleotides and peptides. The development of a generally applicable approach for the construction of 1,2-cis-glycosidic bond with controlled stereoselectivity remains a major challenge, especially for the synthesis of β-mannosides. Here, we report a direct mannosylation strategy mediated by ZnI2, a mild Lewis acid, for the highly stereoselective construction of 1,2-cis-β linkages employing easily accessible 4,6-O-tethered mannosyl trichloroacetimidate donors. The versatility and effectiveness of this strategy were demonstrated with successful β-mannosylation of a wide variety of alcohol acceptors, including complex natural products, amino acids, and glycosides. Through iteratively performing ZnI2-mediated mannosylation with the chitobiosyl azide acceptor followed by site-selective deprotection of the mannosylation product, the novel methodology enables the modular synthesis of the key intermediate trisaccharide with Man-β-(1 → 4)-GlcNAc-β-(1 → 4)-GlcNAc linkage for N-glycan synthesis. Theoretical investigations with density functional theory calculations delved into the mechanistic details of this β-selective mannosylation and elucidated two zinc cations' essential roles as the activating agent of the donor and the principal mediator of the cis-directing intermolecular interaction.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371, Singapore
| | - Qian Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wanmeng Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan.,Graduate School of Science, Osaka University, Toyonaka, Osaka 5600043, Japan
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371, Singapore
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|