1
|
Jiang Q, Han Y, Wu S, Xu T, Chi C. Dibenzo-peri-Heptacene: A Stable Open-Shell Graphene Fragment With a Balanced Combination of Armchair and Zigzag Edge Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404762. [PMID: 39468804 DOI: 10.1002/smll.202404762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Atomically precise open-shell graphene fragments, such as extended peri-acenes, hold significant interest for electronics and spintronics. However, their inherent high reactivity poses challenges for synthesis and application. In this study, a novel approach is introduced: the fusion of a zigzag-edged peri-tetracene with an all-armchair-edged hexa-peri-hexabenzocoronene (HBC) via two shared benzene rings to produce a stable open-shell hydrocarbon, named dibenzo-peri-heptacene (DBPH). The DBPH derivative 1 exhibits considerably enhanced stability, with a half-life (t1/2) of 46 days in toluene solution under ambient conditions. This improved stability is attributed to peri-benzannulation, enhanced aromatic stabilization, and kinetic protection of the reactive sites along the zigzag edges. The structure of 1 is unequivocally verified through single-crystal X-ray diffraction analysis. With a balanced combination of armchair and zigzag edge structures, derivative 1 displays a diradical character of 39.2% and a singlet-triplet gap of ≈-3.16 kcal mol-1. It features a narrow electrochemical energy gap (0.87 eV) and exhibits amphoteric redox behavior. Notably, its dication and dianion states manifest a closed-shell singlet ground state, representing doubly charged structures where a HBC unit is fused with a benzo[f]tetraphene moiety. This research paves the way for synthesizing novel open-shell graphene fragments with adjustable electronic properties and exceptional stability.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tingting Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
2
|
Gong Z, Xiang Q, Li K, Xu Z, Hu J, Ni Y, Sato S, Sun Z. Pentagon‐Containing
Doublet Graphene Fragments with
Edge‐Dependent
Spin/Charge Distribution. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zongcheng Gong
- Institute of Molecular Plus, Department of Chemistry Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Yong Ni
- Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Sota Sato
- Department of Applied Chemistry Integrated Molecular Structure Analysis Laboratory, Social Cooperation Program, The University of Tokyo
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry Tianjin university 92 Weijin Road Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
3
|
Masani Y, Omura Y, Tachi Y, Kozaki M. Synthesis of Triazabenzo[
a
]pyrenes and Their Photophysical, Acid‐Responsive, and Electrochemical Properties. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yasufumi Masani
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yuta Omura
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yoshimitsu Tachi
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Masatoshi Kozaki
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| |
Collapse
|
4
|
Xu X, Xia T, Chen XL, Hao X, Liang T, Li HR, Gong HY. Tetrabenzo[ b, de, gh, j][1,10]phenanthroline: a nitrogen-doped nanographene as a selective metal cation and proton fluorophore. NEW J CHEM 2022. [DOI: 10.1039/d2nj01861f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrogen-doped nanographene molecule tetrabenzo[b,de,gh,j]-[1,10]phenanthroline (TB(phen)) was generated for selective transition metal cation sensing or as a proton fluorophore.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| | - Ting Xia
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| | - Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China
| | - Xiang Hao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tongling Liang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huan-Rong Li
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| |
Collapse
|