1
|
Nigríni M, Bhosale VA, Císařová I, Veselý J. Enantioenriched 1,4-Benzoxazepines via Chiral Brønsted Acid-Catalyzed Enantioselective Desymmetrization of 3-Substituted Oxetanes. J Org Chem 2023; 88:17024-17036. [PMID: 37987742 PMCID: PMC10729023 DOI: 10.1021/acs.joc.3c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Herein, we present a highly enantioselective desymmetrization of 3-substituted oxetanes enabled by a confined chiral phosphoric acid. This metal-free process allows effective access to chiral seven-membered 1,4-benzoxazepines with a high degree of enantiocontrol, under mild reaction conditions. The developed synthetic strategy tolerates a broad substrate scope and demonstrates its synthetic utility in various enantioselective product transformations, thus proving its effectiveness in diverse scenarios.
Collapse
Affiliation(s)
- Martin Nigríni
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Viraj A. Bhosale
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jan Veselý
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
2
|
Li J, Fang M, Liao M, Xie H, Dong XQ, Han Z, Sun J, Huang H. Synthesis of medium-sized heterocycles from oxetanes based on an allylic amination/ring-opening strategy. Chem Commun (Camb) 2023; 59:14467-14470. [PMID: 37986611 DOI: 10.1039/d3cc04355j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The construction of medium-sized ring compounds has been a prominent research area in synthetic chemistry. In this study, we developed a tandem strategy that combines allylic amination and ring-opening of oxetanes to synthesize medium-sized heterocycles. Specifically, N-aryl oxetan-3-amines undergo allylic amination with zwitterionic π-allylpalladium, followed by intramolecular ring-opening, resulting in the formation of medium-sized heterocycles. Notably, we are able to achieve the synthesis of 7-8 membered heterocycles with moderate to good yields by employing different types of zwitterionic π-allylpalladium species.
Collapse
Affiliation(s)
- Jixing Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ming Fang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Dibchak D, Snisarenko M, Mishuk A, Shablykin O, Bortnichuk L, Klymenko-Ulianov O, Kheylik Y, Sadkova IV, Rzepa HS, Mykhailiuk PK. General Synthesis of 3-Azabicyclo[3.1.1]heptanes and Evaluation of Their Properties as Saturated Isosteres. Angew Chem Int Ed Engl 2023; 62:e202304246. [PMID: 37232421 DOI: 10.1002/anie.202304246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 05/27/2023]
Abstract
A general approach to 3-azabicyclo[3.1.1]heptanes by reduction of spirocyclic oxetanyl nitriles was developed. The mechanism, scope, and scalability of this transformation were studied. The core was incorporated into the structure of the antihistamine drug Rupatidine instead of the pyridine ring, which led to a dramatic improvement in physicochemical properties.
Collapse
Affiliation(s)
| | | | - Artem Mishuk
- Enamine Ltd., Chervonotkatska 60, 02094, Kyiv, Ukraine
| | - Oleh Shablykin
- Enamine Ltd., Chervonotkatska 60, 02094, Kyiv, Ukraine
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Akademika Kukharya, 1, 02094, Kyiv, Ukraine
| | | | | | | | | | - Henry S Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | | |
Collapse
|
4
|
Lóška L, Dočekal V, Císařová I, Veselý J. Stereoselective N-Heterocyclic-Carbene-Catalyzed Formal [4 + 2] Cycloaddition: Access to Chiral Heterocyclic Cyclohexenones. Org Lett 2023; 25:174-178. [PMID: 36595711 DOI: 10.1021/acs.orglett.2c04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present study reports an asymmetric NHC-catalyzed formal [4 + 2] cycloaddition of heterocyclic alkenes containing a polarized double bond with an azolium-dienolate intermediate generated from α-bromo-α,β-unsaturated aldehydes without external oxidation of the Breslow intermediate. Heterocyclic cyclohexenones were produced in good isolated yields (typically about 90%) with good stereochemical outcomes (in most cases, dr > 20/1, and ee = 70-99%). The synthetic utility of the protocol was exemplified by the scope of heterocyclic alkenes.
Collapse
Affiliation(s)
- Ladislav Lóška
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| | - Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| |
Collapse
|
5
|
Bhosale VA, Císařová I, Kamlar M, Veselý J. Catalytic asymmetric addition to cyclic N-acyl-iminium: access to sulfone-bearing contiguous quaternary stereocenters. Chem Commun (Camb) 2022; 58:9942-9945. [PMID: 35983733 DOI: 10.1039/d2cc02667h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the first chiral phosphoric acid (CPA)-catalyzed asymmetric addition of α-fluoro(phenylsulfonyl)methane (FSM) derivatives to in situ generated cyclic N-acyliminium. This process enables metal-free expeditious access to sulfone and fluorine incorporating contiguous all substituted quaternary stereocenters ingrained in biorelevant isoindolinones in excellent stereoselectivities (up to 99% ee and up to 50 : 1 dr).
Collapse
Affiliation(s)
- Viraj A Bhosale
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Martin Kamlar
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| |
Collapse
|
6
|
Cobalt-catalyzed ring expansion/ring opening of oxetanes using phosphine oxides as promoters under hydroformylation conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Qi H, Zhao Y, Li W, Chen S. Synthesis of 1,4-benzoxazines via Y(OTf) 3-catalyzed ring opening/annulation cascade reaction of benzoxazoles with propargylic alcohols. Chem Commun (Camb) 2022; 58:9120-9123. [PMID: 35880715 DOI: 10.1039/d2cc03080b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient Y(OTf)3-catalyzed cascade formal [4 + 2] cyclization approach for the formation of 1,4-benzoxazine scaffolds from benzoxazoles and propargyl alcohols through a ring-opening and regioselective ring-closure process has been developed. By using this mild and practical protocol, a broad range of aldehyde-containing 1,4-benzoxazine compounds were prepared in moderate to excellent yields with good functional group tolerance. Mechanistic studies indicated that an SN1 nucleophilic substitution of benzoxazole with a propargyl cation was involved in this transformation.
Collapse
Affiliation(s)
- Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Yupeng Zhao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Wencong Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
8
|
Sandvoß A, Maag H, Daniliuc CG, Schollmeyer D, Wahl JM. Dynamic kinetic resolution of transient hemiketals: a strategy for the desymmetrisation of prochiral oxetanols. Chem Sci 2022; 13:6297-6302. [PMID: 35733901 PMCID: PMC9159106 DOI: 10.1039/d2sc01547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of an electron poor trifluoroacetophenone allows the formation of uniquely stable hemiketals from prochiral oxetanols. When exposed to a cobalt(ii) catalyst, efficient ring-opening to densely functionalized dioxolanes is observed. Mechanistic studies suggest an unprecedented redox process between the cobalt(ii) catalyst and the hemiketal that initiates the oxetane-opening. Based on this observation, a dynamic kinetic resolution of the transient hemiketals is explored that uses a Katsuki-type ligand for stereoinduction (up to 99 : 1 dr and 96 : 4 er) and allows a variety of 1,3-dioxolanes to be accessed (20 examples up to 98% yield). Desymmetrization of prochiral oxetanols via an electron-deficient hemiketal intermediate is achieved. Key to this process is the catalyst's chiral recognition of one of the two hemiketal enantiomers enabling an efficient dynamic kinetic resolution.![]()
Collapse
Affiliation(s)
- Alexander Sandvoß
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 36 48149 Münster Germany.,Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| | - Henning Maag
- Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Corrensstraße 36 48149 Münster Germany
| | - Dieter Schollmeyer
- Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| | - Johannes M Wahl
- Department Chemie, Johannes Gutenberg-Universität Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
9
|
Tang L, Zang Y, Guo W, Han Z, Huang H, Sun J. Reductive Opening of Oxetanes Catalyzed by Frustrated Lewis Pairs: Unexpected Aryl Migration via Neighboring Group Participation. Org Lett 2022; 24:3259-3264. [PMID: 35467358 DOI: 10.1021/acs.orglett.2c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B(C6F5)3 was found to catalyze an unusual double reduction of oxetanes by hydrosilane with aryl migration via neighboring group participation. Control experiments suggested that the phenonium ion serves as the key intermediate. Minor modification of this protocol also led to simple hydrosilylative opening of oxetanes.
Collapse
Affiliation(s)
- Luning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Zang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wengang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing First Road, Shenzhen 518057, China
| |
Collapse
|
10
|
Zhang R, Sun M, Yan Q, Lin X, Li X, Fang X, Sung HHY, Williams ID, Sun J. Asymmetric Synthesis of Pyrrolidines via Oxetane Desymmetrization. Org Lett 2022; 24:2359-2364. [PMID: 35322664 DOI: 10.1021/acs.orglett.2c00564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric synthesis of chiral pyrrolidines bearing an all-carbon quaternary stereocenter in the 3-position remains challenging. Herein we report two efficient protocols by means of oxetane desymmetrization, featuring the use of a readily available tert-butylsulfinamide chiral auxiliary and a catalytic system with chiral phosphoric acid as the source of chirality, respectively.
Collapse
Affiliation(s)
- Renwei Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Road, Shenzhen 518057, China.,Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Meng Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qiaolin Yan
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xingbang Lin
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xin Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xin Fang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Herman H Y Sung
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ian D Williams
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Road, Shenzhen 518057, China
| |
Collapse
|
11
|
Rojas JJ, Torrisi E, Dubois MAJ, Hossain R, White AJP, Zappia G, Mousseau JJ, Choi C, Bull JA. Oxetan-3-ols as 1,2-bis-Electrophiles in a Brønsted-Acid-Catalyzed Synthesis of 1,4-Dioxanes. Org Lett 2022; 24:2365-2370. [PMID: 35311271 PMCID: PMC9007565 DOI: 10.1021/acs.orglett.2c00568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Annulations
that combine diacceptors with bis-nucleophiles are
uncommon. Here, we report the synthesis of 1,4-dioxanes from 3-aryloxetan-3-ols,
as 1,2-bis-electrophiles and 1,2-diols. Brønsted acid Tf2NH catalyzes both the selective activation of the oxetanol,
to form an oxetane carbocation that reacts with the diol, and intramolecular
ring opening of the oxetane. High regio- and diastereoselectivity
are achieved with unsymmetrical diols. The substituted dioxanes and
fused bicyclic products present interesting motifs for drug discovery
and can be further functionalized.
Collapse
Affiliation(s)
- Juan J. Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Elena Torrisi
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino “Carlo Bo”, P.za Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Maryne A. J. Dubois
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Riashat Hossain
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Giovanni Zappia
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino “Carlo Bo”, P.za Rinascimento, 6, 61029 Urbino (PU), Italy
| | - James J. Mousseau
- Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Chulho Choi
- Pfizer Worldwide Research, Development and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - James A. Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|