1
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Zhang P, Ma J, Liu X, Xue F, Zhang Y, Wang B, Jin W, Xia Y, Liu C. Electrochemical Synthesis of α-Thiocyanated/Methoxylated Ketones Using Enol Acetates. J Org Chem 2023; 88:16122-16131. [PMID: 37963225 DOI: 10.1021/acs.joc.3c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We have developed the synthesis of α-substituted ketone compounds with enol acetates in an electrochemical way. By using cheap NH4SCN and MeOH as the radical sources, a series of valuable α-thiocyanates/methoxy ketones were synthesized under mild electrolysis conditions in acceptable yields with diverse functional group compatibility. Additionally, the scale-up experiment and synthetic transformations reveal potential applications in organic synthesis.
Collapse
Affiliation(s)
- Peng Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Junwei Ma
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuan Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- College of Future Technology, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
3
|
Sar D, Yin S, Grygus J, Rentería-Gómez Á, Garcia M, Gutierrez O. Expanding the chemical space of enol silyl ethers: catalytic dicarbofunctionalization enabled by iron catalysis. Chem Sci 2023; 14:13007-13013. [PMID: 38023494 PMCID: PMC10664506 DOI: 10.1039/d3sc04549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Enol silyl ethers are versatile, robust, and readily accessible substrates widely used in chemical synthesis. However, the conventional reactivity of these motifs has been limited to classical two electron (2-e) enolate-type chemistry with electrophilic partners or as radical acceptors in one electron (1-e) reactivity leading, in both cases, to exclusive α-monofunctionalization of carbonyls. Herein we describe a mild, fast, and operationally simple one-step protocol that combines readily available fluoroalkyl halides, silyl enol ethers, and, for the first time, hetero(aryl) Grignard reagents to promote selective dicarbofunctionalization of enol silyl ethers. From a broader perspective, this work expands the synthetic utility of enol silyl ethers and establishes bisphosphine-iron catalysis as enabling technology capable of orchestrating selective C-C bond formations with short-lived α-silyloxy radicals with practical implications towards sustainable chemical synthesis.
Collapse
Affiliation(s)
- Dinabandhu Sar
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Shuai Yin
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Jacob Grygus
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | | - Melanie Garcia
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
4
|
Wu F, Guo Y, Ren Z, Chen Z, Liu X, Wang C, Rong L. Electrochemical Radical Reactions of Enol Acetates and Free Alcohols Directly Access to α-Alkoxylated Carbonyl Compounds. J Org Chem 2023. [PMID: 37223997 DOI: 10.1021/acs.joc.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The efficient intermolecular alkoxylation reactions of various enol acetates and different alcohols are developed in the electrochemical process for the first time. Enol acetates derived from either aromatic, alkyl, or alicyclic ketones, and abundant free alcohols directly used in this synthetic strategy, make this transformation very valuable in synthesis and application in the future.
Collapse
Affiliation(s)
- Fan Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Yu Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Zihao Ren
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Zixuan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Xiaoqin Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, P. R. China
| | - Liangce Rong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116 Jiangsu, P. R. China
| |
Collapse
|
5
|
Cui W, Guo G, Wang Y, Song X, Lv J, Yang D. Visible light/copper catalysis enabled alkylation of silyl enol ethers with arylsulfonium salts. Chem Commun (Camb) 2023; 59:6367-6370. [PMID: 37144332 DOI: 10.1039/d3cc01056b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An efficient protocol has been developed herein for the site-selective alkylation of silyl enol ethers with arylsulfonium salts giving access to valuable aryl alkyl thioethers under visible light conditions. Enabled by copper (I) photocatalysis, the C-S bond of arylsulfonium salts can be selectively cleaved to deliver C-centered radicals under mild conditions. This developed method provides a straightforward approach to utilize arylsulfonium salts as sulfur sources for the synthesis of aryl alkyl thioethers.
Collapse
Affiliation(s)
- Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Guoju Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yifei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Banoun C, Bourdreux F, Dagousset G. Highly selective γ-alkoxylation, γ-amination and γ-alkylation of unbiased enals by means of photoredox catalysis. Chem Commun (Camb) 2023; 59:760-763. [PMID: 36541835 DOI: 10.1039/d2cc05749b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report herein a general and highly selective γ-functionalization protocol under visible light irradiation. This mild radical approach enables the expansion of the scope of application to unbiased enals and the introduction of a wide variety of alkoxy, amino and alkyl functionalities in the γ position with complete regioselectivity.
Collapse
Affiliation(s)
- Camille Banoun
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, Versailles Cedex, 78035, France.
| | - Flavien Bourdreux
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, Versailles Cedex, 78035, France.
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, Versailles Cedex, 78035, France.
| |
Collapse
|
7
|
Lin D, Prakash GKS. Visible-Light Photoredox-Catalyzed C(sp 2)-H Difluoromethoxylation of (Hetero)arenes Utilizing a Shelf-Stable Pyridinium Reagent. Org Lett 2022; 24:7707-7711. [PMID: 35984319 DOI: 10.1021/acs.orglett.2c02408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Difluoromethoxyarene moieties have been demonstrated to impart desirable physio-chemical properties to organic molecules. Presented herein is a shelf-stable radical difluoromethoxylating reagent that enables facile and direct C(sp2)-H difluoromethoxylation of (hetero)arenes under blue light photoredox catalysis. 4-Cyano-1-(difluoromethoxy)pyridin-1-ium trifluoromethanesulfonate is prepared in one simple step from the parent pyridine N-oxide. The current protocol tolerates a variety of synthetically and pharmacologically relevant functional groups. Applicability toward the late-stage functionalization of APIs and druglike molecules is also demonstrated.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
8
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
9
|
Wang Y, Bao Y, Tang M, Ye Z, Yuan Z, Zhu G. Recent advances in difunctionalization of alkenes using pyridinium salts as radical precursors. Chem Commun (Camb) 2022; 58:3847-3864. [PMID: 35257136 DOI: 10.1039/d2cc00369d] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarise the recent applications of pyridinium salts in the radical-mediated difunctionalization of alkenes. Pyridinium salts are a privileged class of compounds that show great utility in natural products and synthetic chemistry. Various organic transformations of pyridinium salts, especially in radical chemistry, have been developed in recent years. We prepared this review based on the two distinguished properties of pyridinium salts in radical transformation: (1) pyridinium salts can easily undergo single electron reduction to deliver X radicals. (2) Pyridinium salts are highly electrophilic so that alkyl radical intermediates can easily add to the pyridine core. Based on the role of pyridinium salts in difunctionalization of alkenes, the main body of this review is divided into three parts: (1) using pyridinium salts as X transfer reagents. (2) Using pyridinium salts as novel pyridine transfer reagents. (3) Using pyridinium salts as bifunctional reagents (X and pyridine). The C2 and C4 selectivity during pyridylation is discussed in detail. We hope that this review will provide a comprehensive overview of this topic and promote the wider development and application of pyridinium salts.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Meifang Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
10
|
Quach L, Dutta S, Pflüger PM, Sandfort F, Bellotti P, Glorius F. Visible-Light-Initiated Hydrooxygenation of Unactivated Alkenes─A Strategy for Anti-Markovnikov Hydrofunctionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Linda Quach
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Philipp M. Pflüger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frederik Sandfort
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|