1
|
Xiong B, Li M, Cao R, Yue S, Xu W, Liu Y, Zhu L, Tang KW. Elemental Sulfur/Selenium-Mediated Metal-Free Phosphinothioation and Phosphinoselenoation of Vinylsulfonium Salts with P-H Bonds. J Org Chem 2025; 90:275-291. [PMID: 39680636 DOI: 10.1021/acs.joc.4c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
An efficient and facile method has been developed for the construction of novel P-S-C and P-Se-C bonds by facilitating the three-component cross-coupling reaction of P-H bonds with elemental sulfur/selenium and vinylsulfonium salts, utilizing sodium bicarbonate as a base. This approach eliminates the need for the use of toxic and odorous active sulfur/selenium reagents and noble metals, thereby offering a new pathway for synthesizing S-phosphinothioates and Se-phosphinoselenoates via the organic conversion of inorganic sources. The reaction has showcased remarkable versatility in terms of substrate applicability, particularly for organophosphorus compounds containing P-H bonds and vinylsulfonium salt derivatives. The resulting phosphinothioation/phosphinoselenoation products can be obtained with high yield and regioselectivity. Additionally, a plausible reaction mechanism for this transformation has been proposed based on step-by-step control experiments and 31P NMR tracking analysis.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, P. R. China
| | - Meng Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Renfeng Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Sitong Yue
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| |
Collapse
|
2
|
He J, Zhou X, Wan Z, Cao H, Liu X. New Frontiers in phosphorothioate formation: harnessing inorganic phosphorus sources. Chem Commun (Camb) 2024; 60:14691-14702. [PMID: 39588692 DOI: 10.1039/d4cc05854b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Organic phosphorothioates are a class of organic compounds containing the C-S-P structural motif, known for their unique physical and chemical properties. These compounds hold significant value in various fields, including agriculture, pharmaceuticals, and materials science, particularly playing a crucial role in agrochemicals and nucleotide modification. Traditionally, phosphorothioates have been synthesized primarily through the formation of P-S bonds or direct phosphorothioation reactions from organic phosphorus sources such as P(O)H and P(O)SH. In recent years, new strategies utilizing inorganic phosphorus sources, such as P4S10 and white phosphorus (P4), have emerged as a dynamic area of research. This review highlights the latest advancements in the synthesis of phosphorothioates and phosphoropolythioates from inorganic phosphorus sources, focusing on their applicability, mechanisms, current limitations, and potential future directions.
Collapse
Affiliation(s)
- Jiawei He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xuesi Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Zixuan Wan
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
3
|
Silalai P, Saeeng R. Visible-light-induced photocatalytic four-component fluoroalkylation-dithiocarbamylation via difunctionalization of styrenes. Org Biomol Chem 2024; 22:8437-8452. [PMID: 39140347 DOI: 10.1039/d4ob00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein we demonstrate that a visible-light-induced photocatalytic four-component fluoroalkylation-dithiocarbamylation is a unified method for the fluoroalkylation of diverse activated fluoroalkyl halides, including monofluoroalkyl bromides, difluoroalkyl bromides, trifluoromethyl iodide, and perfluoroalkyl iodides. The synthetic value of this method has been demonstrated by the transformations of various substrates containing drug/natural product skeletons, gram scale reactions, and further derivatizations of the fluorodithiocarbamate products. This work features an atom economical protocol that is simple to operate, does not require any additives or strong bases, and can be carried out under mild conditions.
Collapse
Affiliation(s)
- Patamawadee Silalai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
- The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
4
|
Shi S, Chen H, Yang S, Dong H, Zhu J, Zheng B, Wang X, Liang Z, Ren H, Gao Y. Photoredox/Copper Dual-Catalyzed Phosphorothiolation of Propargylic Derivatives for the Switchable Synthesis of S-Alkyl, S-Vinyl and S-Allenyl Phosphorothioates. Org Lett 2024; 26:7049-7054. [PMID: 39119922 DOI: 10.1021/acs.orglett.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Herein, we report a photoredox/copper dual-catalyzed selective phosphorothiolation of propargylic derivatives from easily accessible [P(O)SH] compounds. This reaction provides a general, mild and versatile procedure to synthesize a variety of synthetically useful S-alkyl, S-vinyl and S-allenyl phosphorothioates selectively from the same set of simple starting materials.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Hu Chen
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Shiwei Yang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Huaze Dong
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Jinmiao Zhu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Bin Zheng
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Xiaohong Wang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Zhaoyang Liang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Hongyu Ren
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
5
|
Zhang P, Li W, Yang S, Qu W, Wang L, Lin J, Gao X. Construction of Phosphorothiolated 2-Pyrrolidinones via Photoredox/Copper-Catalyzed Cascade Radical Cyclization/Phosphorothiolation. J Org Chem 2024; 89:4947-4957. [PMID: 38498700 DOI: 10.1021/acs.joc.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A photoredox/copper-catalyzed cascade radical cyclization/phosphorothiolation reaction of N-allylbromoacetamides and P(O)SH compounds has been established. A broad range of novel nonfluorine- or difluoro-substituted 2-pyrrolidinones bearing the C(sp3)-SP(O)(OR)2 moiety can be conveniently constructed in moderate to good yields under mild conditions. Importantly, most of the tested phosphorothiolated 2-pyrrolidinones showed potent inhibitory effects toward both AChE and BChE.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuai Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weilong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
6
|
Hussain F, Ahmed S, Padder AH, Ahmed QN. Synthesis of mixed phosphorotrithioates via thiol coupling with bis(diisopropylamino)chlorophosphine and sulphenyl chloride. Org Biomol Chem 2024; 22:284-288. [PMID: 38086736 DOI: 10.1039/d3ob01668d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, we report a novel and efficient one-pot synthesis of mixed phosphorotrithioates under mild conditions at ambient temperature, obviating the requirement for supplementary additives. The method's versatility stems from its utilization of diverse thiols as nucleophilic reactants, 1-chloro-N,N,N',N'-tetraisopropylphosphanediamine [bis(diisopropylamino)chlorophosphine] as the phosphorus precursor, and various sulphenyl chlorides as sources of electrophilic sulfur. Notably, our investigation extends beyond mixed phosphorotrithioates to encompass the synthesis of phosphoroselenodithioates, underscoring the broad applicability of this synthetic protocol.
Collapse
Affiliation(s)
- Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sajjad Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashiq Hussain Padder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Shi S, Chen H, Zhao M, Yang S, Li P, Wang X, Zhu J, Fang Q, Xu W, Tang G, Gao Y. Copper-Catalyzed Fluoroalkylphosphorothiolation of Alkynes for the Synthesis of ( E)-β-Fluoroalkyl Vinyl Phosphorothioates. Org Lett 2023; 25:8296-8301. [PMID: 37947423 DOI: 10.1021/acs.orglett.3c03349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A convenient copper-catalyzed three-component radical-based fluoroalkylphosphorothiolation of terminal alkynes with (iPrO)2P(O)SH and fluoroalkylation reagent for the synthesis of a variety of (E)-β-fluoroalkyl vinyl phosphorothioates with excellent regioselectivity and stereoselectivity has been developed. All the starting materials used in this reaction are highly stable and readily available. Thus, this process features with mild reaction conditions, simple operation and good functional group tolerance (>40 examples). Furthermore, this modular reaction system allows the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Hu Chen
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Ming Zhao
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Shiwei Yang
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Pan Li
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Xiaohong Wang
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Jinmiao Zhu
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Qi Fang
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Wenbiao Xu
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuzhen Gao
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
8
|
Jiang S, Du S, Bai J, Chen X, Liang M, Lin S, Luo MJ, Song XR, Xiao Q. Cascade Cyclization of 1,5-Diynols and (RO) 2P(O)SH to Construct Benzo[ b]fluorenyl S-Alkyl Phosphorothioates under Catalyst-Free Conditions. J Org Chem 2023; 88:14571-14586. [PMID: 37789588 DOI: 10.1021/acs.joc.3c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An efficient and practical cascade cyclization of 1,5-diynols with (RO)2P(O)SH as the acid promoter and nucleophile under mild conditions was developed. A variety of highly substituted benzo[b]fluorenyl-containing S-alkyl phosphorothioates were successfully constructed in moderate to excellent yields. Furthermore, this protocol exhibited good functional group tolerance, a broad substrate scope, and potential practical applications, with water as the only byproduct. The reaction proceeded with allenyl thiophosphate as a key intermediate, followed by a Schmittel-type cyclization process to produce the target product.
Collapse
Affiliation(s)
- Shimin Jiang
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Jiang Bai
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Xi Chen
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Meng Liang
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Shihong Lin
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Mu-Jia Luo
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science &Technology Normal University, Key Laboratory of Organic Chemistry, Jiangxi Province, Nanchang 330013, China
| |
Collapse
|
9
|
Visible light induced four component reaction of styrene for the access of thiodifluoroesters. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Hu Z, Wu J, Wu J, Wu F. Research Progress on Direct Trifluoromethylselenylation. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Dong DQ, Yang SH, Wu P, Wang JZ, Min LH, Yang H, Zhou MY, Wei ZH, Ding CZ, Wang YL, Gao JH, Wang SJ, Wang ZL. Copper-Catalyzed Difluoroalkylation Reaction. Molecules 2022; 27:molecules27238461. [PMID: 36500553 PMCID: PMC9740754 DOI: 10.3390/molecules27238461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics, we classify these difluoroalkylation reactions into three types.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shao-Hui Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Pei Wu
- Shandong Academy of Pesticide Sciences, Beiyuan Street, Jinan 250033, China
- Correspondence: (P.W.); (Z.-L.W.)
| | - Jin-Zhi Wang
- Tancheng County Agricultural Technology Popularization Center, Linyi 276100, China
| | - Ling-Hao Min
- Qingdao Zhongda Agritech Co., Ltd., Qingdao 266109, China
| | - Hao Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng-Yu Zhou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ze-Hui Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Cai-Zhen Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Hui Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shu-Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (P.W.); (Z.-L.W.)
| |
Collapse
|
12
|
Yang B, Zhang XY, Yue HQ, Li WZ, Li M, Lu L, Wu ZQ, Li J, Sun K, Yang S. A Promoter‐free Protocol for the Synthesis of Selenophosphates and Thiophosphates via a Spontaneous Process at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Kai Sun
- Anyang Normal University CHINA
| | | |
Collapse
|
13
|
Zhang P, Li W, Zhu X, Li Y, Zhao X, Shi S, Zhu F, Lin J, Gao X. Photoredox and Copper‐Catalyzed Sulfonylphosphorothiolation of Alkenes toward β‐Sulfonyl Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Ying Li
- Xinxiang Medical University CHINA
| | | | | | | | | | - Xia Gao
- Xinxiang Medical University CHINA
| |
Collapse
|
14
|
Bao ZP, Zhang Y, Wu XF. Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chem Sci 2022; 13:9387-9391. [PMID: 36093028 PMCID: PMC9384137 DOI: 10.1039/d2sc02665a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
The introduction of fluorine atoms into organic molecules is an attractive but challenging topic. In this work, an interesting palladium-catalyzed difluoroalkylative carbonylation of aryl olefins has been developed. A wide range of aryl olefins were transformed into the corresponding difluoropentanedioate compounds with good functional-group tolerance and excellent regioselectivity. Inexpensive ethyl bromodifluoroacetate acts both as a difluoroalkyl precursor and a nucleophile here. Additionally, a scale-up reaction was also performed successfully, and further transformations of the obtained product were shown as well.
Collapse
Affiliation(s)
- Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 1 8059 Rostock Germany
| |
Collapse
|
15
|
Zhang B, Fu Z, Yang H, Liu D, Sun Y, Xu Y, Yu F, Yan S. Transition‐Metal‐Free C(
sp
2
)−H Phosphorothiolation/Cyclization of
o
‐Hydroxyarylenaminones: Access to
S
‐3‐Chromon Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Zhonghui Fu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haoqi Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Donghan Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yulin Sun
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yu Xu
- School of nursing Xi'An Innovation College of Yan'An University Xi'An 710100 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Sheng‐Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| |
Collapse
|