1
|
Cook A, Kassymbek A, Vaezghaemi A, Barbery C, Newman SG. An S N1-Approach to Cross-Coupling: Deoxygenative Arylation Facilitated by the β-Silicon Effect. J Am Chem Soc 2024; 146:19929-19938. [PMID: 39002160 DOI: 10.1021/jacs.4c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
We report a dual metal-catalyzed method for the cross-coupling of unprotected alcohols by exploiting the β-Si effect. This deoxygenative Suzuki-Miyaura reaction tolerates a range of primary, secondary, and tertiary alcohol substrates along with diverse functional groups and heterocycles. Mechanistic experiments including KIE, VTNA, and Eyring analyses suggest the existence of a carbocation intermediate on the reaction pathway, consistent with a rare SN1 pathway for the activation of an electrophile in cross-coupling reactions. A novel bis-imidazolium N-heterocyclic carbene (NHC) ligand was found to be optimal for reactivity, and nickel(0)-, nickel(I)- and nickel(II)- complexes of this ligand were isolated and characterized. In contrast to more well-established shorter chain ligands, these long-chain NHCs are found to have characteristically large bite angles, which may be critical for enabling the deoxygenative arylation of aliphatic alcohols.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aishabibi Kassymbek
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aref Vaezghaemi
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Carlos Barbery
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Monteith JJ, Rousseaux SAL. A Dual Ni/Photoredox Cross-Coupling Approach toward Mandelic Acids. Org Lett 2024; 26:4566-4570. [PMID: 38758597 DOI: 10.1021/acs.orglett.4c01547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Mandelic acid derivatives represent a valuable class of compounds due to their wide use in synthetic organic chemistry and the pharmaceutical sector. Herein, we report a novel reductive Ni/photoredox cross-coupling of readily accessible, bench stable N-alkoxyphthalimides and aryl halides to prepare unprotected mandelic acid ester derivatives. Mechanistic experiments suggest that this cross-coupling likely proceeds via a pathway that is distinct from previous reports using similar redox-active alkoxy radical precursors.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
3
|
Monteith JJ, Pearson JW, Rousseaux SAL. Photocatalytic O- to S-Rearrangement of Tertiary Cyclopropanols. Angew Chem Int Ed Engl 2024; 63:e202402912. [PMID: 38418404 DOI: 10.1002/anie.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Despite the importance of heteroatom-substituted cyclopropane derivatives in drug design and organic synthesis, cyclopropanethiols remain critically underexplored. Inspired by the wide use of the Newman-Kwart rearrangement to access valuable thiophenols from phenol feedstocks, we report the development of a photocatalytic approach for efficient ambient temperature aliphatic O- to S-rearrangement on tertiary cyclopropanol derivatives. After demonstrating that a range of cyclopropanethiols-that are difficult to access by other methods-can be obtained with this strategy, we show that these rearranged products can be easily hydrolyzed and further derivatized. We conclude this study with mechanistic findings that enabled an initial extension of this approach toward other classes of aliphatic alcohols.
Collapse
Affiliation(s)
- John J Monteith
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - James W Pearson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
4
|
Monteith JJ, Rousseaux SAL. Redox-Active Thiocarbonyl Auxiliaries in Ni-Catalyzed Cross-Couplings of Aliphatic Alcohols. Acc Chem Res 2023; 56:3581-3594. [PMID: 38047525 DOI: 10.1021/acs.accounts.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
ConspectusThe Barton-McCombie deoxygenation reaction first established the use of O-alkyl thiocarbonyl derivatives as powerful redox-active agents for C(sp3)-O reduction. In recent years, first-row transition metals capable of engaging with alkyl radical intermediates generated from O-alkyl thiocarbonyl derivatives using alternative stoichiometric radical precursors have been developed. Given the ability of select Ni catalysts to both participate in single-electron oxidative addition pathways and intercept alkyl radical intermediates, our group has investigated the use of O-alkyl thiocarbonyl derivatives as electrophiles in novel cross-coupling reactions. After describing related work in this area, this Account will first summarize our entry point into this field. Here, we used the cyclopropane ring as a reporter of leaving group reactivity to aid in the design and optimization of a novel redox-active O-thiocarbamate leaving group for C(sp3)-O arylation. Motivation for this pursuit was driven by the propensity of the cyclopropane ring to undergo ring opening under polar (2e) oxidative addition pathways or to be maintained under single-electron (1e) conditions. Using these guiding principles, we developed a method for the deoxygenative arylation of cyclopropanol derivatives using a Ni catalyst without the need for a stoichiometric external reductant or photocatalyst. We next summarize our evaluation of an alternative redox-active O-thiocarbonyl imidazole auxiliary in a related deoxygenative cross-coupling. This work demonstrated an extension of our initial approach to the deoxygenative arylation of primary and secondary aliphatic alcohol derivatives. A brief mechanistic investigation revealed that this reaction likely proceeds via a distinct mechanism involving direct homolytic C(sp3)-O bond cleavage. We conclude this Account with a summary of work aimed toward a unique approach for thiocarboxylic acid derivative synthesis. This project was inspired by the efficiency of thionoester generation under most of the reaction conditions evaluated in our prior investigations. Using alcohol, amine, or thiol starting materials, which were activated with convenient thiocarbonyl sources in a single step, we optimized for a Ni-catalyzed cross-coupling capable of providing access to a range of thionoester, thioamide, or dithioester products. In summary, our work has revealed the potential of redox-active thiocarbonyl auxiliaries in Ni-catalyzed cross-couplings with C(sp3)-O electrophiles. We anticipate that the continued investigation of aliphatic thiocarbonyl derivatives as radical precursors with alternative single-electron inputs will be an area of continued growth in the years to come.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Fang L, Jia S, Fan S, Zhu J. Palladium-catalyzed coupling of amides and cyclopropanols for the synthesis of γ-diketones. Chem Commun (Camb) 2023; 59:10392-10395. [PMID: 37551733 DOI: 10.1039/d3cc02888g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
A palladium catalytic method has been developed for the coupling of amides and cyclopropanols to γ-diketones, through simultaneous C-N and C-C activation. Heteroatom ligand exchange and heteroatom-to-carbon ligation mode switching enable the achievement of molecular cross-coupling in an amide N-atom structural context-dependent manner, avoiding any stoichiometric organometallic reagent or base.
Collapse
Affiliation(s)
- Lili Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuqi Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Shuaixin Fan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Peng TY, Xu ZY, Zhang FL, Li B, Xu WP, Fu Y, Wang YF. Dehydroxylative Alkylation of α-Hydroxy Carboxylic Acid Derivatives via a Spin-Center Shift. Angew Chem Int Ed Engl 2022; 61:e202201329. [PMID: 35388555 DOI: 10.1002/anie.202201329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/05/2022]
Abstract
A strategically distinct dehydroxylative alkylation reaction of α-hydroxy carboxylic acid derivatives with alkenes is developed. The reaction starts with the attack of a 4-dimethylaminopyridine (DMAP)-boryl radical to the carbonyl oxygen atom, followed by a spin-center shift (SCS) to trigger the C-O bond scission. The resulting α-carbonyl radicals couple with a wide range of alkenes to furnish various alkylated products. This strategy allows for the efficient conversion of a wide array of α-hydroxy amides and esters derived from several biomass molecules and natural products to value-added compounds. Experimental and computational studies verified the reaction mechanism.
Collapse
Affiliation(s)
- Tian-Yu Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zhe-Yuan Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Bin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Wen-Ping Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
MacMillan JWM, McGuire RT, Stradiotto M. Organic Base Enabled Nickel‐Catalyzed Mono‐α‐Arylation of Feedstock Solvents. Chemistry 2022; 28:e202200764. [DOI: 10.1002/chem.202200764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Joshua W. M. MacMillan
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| | - Ryan T. McGuire
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
8
|
Anwar K, Merkens K, Aguilar Troyano FJ, Gómez-Suárez A. Radical Deoxyfunctionalisation Strategies. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Khadijah Anwar
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemistry GERMANY
| | - Kay Merkens
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemstry GERMANY
| | | | - Adrián Gómez-Suárez
- Bergische Universitat Wuppertal Organische Chemie Gaußstr. 20 42119 Wuppertal GERMANY
| |
Collapse
|
9
|
Peng TY, Xu ZY, Zhang FL, Li B, Xu WP, Fu Y, Wang YF. Dehydroxylative Alkylation of α‐Hydroxy Carboxylic Acids Derivatives via Spin‐center Shift. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian-Yu Peng
- University of Science and Technology of China Department of Chemistry CHINA
| | - Zhe-Yuan Xu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Feng-Lian Zhang
- University of Science and Technology of China Department of Chemistry CHINA
| | - Bin Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Wen-Ping Xu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yao Fu
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yi-Feng Wang
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
10
|
Verma S, Kujur S, Sharma R, Pathak DD. Cucurbit[6]uril supported β-Ni(OH) 2 nanoparticles as a heterogeneous catalyst for the synthesis of quinazolines via acceptorless dehydrogenative coupling of alcohols with nitriles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03484k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthesis of a series of quinazolines using β-Ni(OH)2-CB[6] as a heterogeneous nanocatalyst.
Collapse
Affiliation(s)
- Shruti Verma
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Shelly Kujur
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Richa Sharma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Devendra D. Pathak
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| |
Collapse
|