1
|
Qiu S, Guo H, Xu P. Photocatalyzed Selective Hydrocarbonation of Alkenes with Hantzsch Esters toward 4-Alkyl-Hantzsch Esters. Org Lett 2024; 26:6730-6735. [PMID: 39078309 DOI: 10.1021/acs.orglett.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we describe a mild photoredox-neutral reaction system that enables the selective hydrocarbonation of alkenes with Hantzsch esters, affording structurally diverse 4-alkyl-Hantzsch esters. This straightforward protocol can be performed under an air atmosphere without the need for any transition metals. The synthetic potential of this method is well exemplified by the late-stage structural modification of a series of pharmaceutically relevant complex molecules.
Collapse
Affiliation(s)
- Shiqin Qiu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Huaixuan Guo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Peng Xu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
2
|
Lu Q, He Y, Chang J, Yu W. Synthesis of 2,2-difunctionalized 2 H-azirines via I 2-mediated annulation of enamines. Org Biomol Chem 2024; 22:2292-2299. [PMID: 38407371 DOI: 10.1039/d4ob00156g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Various 2,2-difunctionalized 2H-azirines were synthesized via I2-mediated annulation reactions of readily accessible enamines in the presence of nitrogen or non-nitrogen nucleophiles. The features of the present synthesis process also include no use of transition metals, simple operation, mild reaction conditions, a broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Qing Lu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.
| | - Yanmin He
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Song S, Wang Y, Yu F. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source. Top Curr Chem (Cham) 2023; 381:30. [PMID: 37749452 DOI: 10.1007/s41061-023-00440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
The field of cascade cyclization for the construction of 1,4-dihydropyridines (1,4-DHPs) has been continuously expanding during the last decades because of their broad-spectrum biological and synthetic importance. To date, many methods have been developed, mainly including the Hantzsch reaction, Hantzsch-like reaction and newly developed cascade cyclization, in which various synthons have been successively developed as C4 sources of 1,4-DHPs. This review presents the cascade cyclization synthesis strategy for the construction of 1,4-DHPs according to various C4 sources from carbonyl compounds, alkenyl fragments, alcohols, aliphatic amines, glycines and other C4 sources.
Collapse
Affiliation(s)
- Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
4
|
Liu D, Song S, Chen L, Zhang M, Liu Z, Lu X, Huang J, Yu F. Access to thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives via a regioselective oxidative annulation reaction. Org Biomol Chem 2023; 21:2596-2602. [PMID: 36891944 DOI: 10.1039/d3ob00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A metal-free regioselective oxidative annulation reaction of readily available 2,4-pentanediones with primary amines has been described. This protocol provides a divergent strategy for the incorporation of various radical donors into 5-alkylidene 3-pyrrolin-2-one skeletons, producing a variety of thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives. Moreover, the diverse synthetic transformations of the 5-alkylidene 3-pyrrolin-2-one products were also investigated.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| |
Collapse
|
5
|
Fang J, Pan Z, Liu T, Rao Y, Jiang H, Ma Y. I 2-mediated coupling of quinazolinone enamines with 2-aminopyridines: a new strategy to access spiroquinazolinones. Org Biomol Chem 2023; 21:2355-2360. [PMID: 36847115 DOI: 10.1039/d3ob00083d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Herein, we report a novel, rapid and efficient route to the spiroquinazolinone framework via an umpolung strategy mediated by molecular iodine. A library of functionalized spiroquinazolinone iodide salts was synthesized in moderate to good yields under ambient, metal-free and mild conditions. The current methodology opens up a new efficient and concise strategy for the construction of spiroquinazolinones.
Collapse
Affiliation(s)
- Jingxi Fang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| | - Zhentao Pan
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| | - Tong Liu
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| | - Yingbo Rao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| | - Huajiang Jiang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| |
Collapse
|
6
|
Wang M, Ye W, Sun N, Yu W, Chang J. Synthesis of Quinazolinone-Fused Tetrahydroisoquinolines and Related Polycyclic Scaffolds by Iodine-Mediated sp 3 C-H Amination. J Org Chem 2023; 88:1061-1074. [PMID: 36630199 DOI: 10.1021/acs.joc.2c02509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An iodine-mediated intramolecular sp3 C-H amination reaction producing quinazolinone-fused polycyclic skeletons from 2-aminobenzamide precursors is reported. This reaction does not use transition metals, has a broad substrate scope, and can be used on a gram scale. Under the optimal reaction conditions, a variety of quinazolinone-fused tetrahydroisoquinolines and derivatives of Rutaecarpine were synthesized from readily accessible compounds. The reaction proceeds well with crude 2-aminobenzamide derivatives, allowing for the synthesis of the products from simple 2-aminobenzoic acids and tetrahydroisoquinolines without purification of the 2-aminobenzamide intermediates. Preliminary biological experiments have identified Cereblon (CRBN) inhibitory activity and relevant anti-myeloma medicinal properties in some of these polycyclic products.
Collapse
Affiliation(s)
- Manman Wang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjun Ye
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nannan Sun
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Wang MM, Nguyen TVT, Waser J. Activation of aminocyclopropanes via radical intermediates. Chem Soc Rev 2022; 51:7344-7357. [PMID: 35938356 DOI: 10.1039/d2cs00090c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminocyclopropanes are versatile building blocks for accessing high value-added nitrogen-containing products. To control ring-opening promoted by ring strain, the Lewis acid activation of donor-acceptor substituted systems is now well established. Over the last decade, alternative approaches have emerged proceeding via the formation of radical intermediates, alleviating the need for double activation of the cyclopropanes. This tutorial review summarizes key concepts and recent progress in ring-opening transformations of aminocyclopropanes via radical intermediates, divided into formal cycloadditions and 1,3-difunctionalizations.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Department of Chemical Biology, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Preparation of Substituted Pyridines via a Coupling of β-Enamine Carbonyls with Rongalite-Application for Synthesis of Terpyridines. REACTIONS 2022. [DOI: 10.3390/reactions3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A Hantzsch-type strategy for the synthesis of 2,3,5,6-tetrasubstituted pyridines via an oxidative coupling of β-enamine carbonyl compounds with rongalite was developed. This method employs rongalite as a C1 unit for the assembly of a pyridine ring at C-4 position, offering a facile method for the preparation of substituted pyridine derivatives with a broad functional group tolerance. In particular, this method allows us to prepare terpyridine derivatives, which are important ligands or structural fragments for catalysts and 3D metal–organic frameworks.
Collapse
|
9
|
Fang Y, Wang M, Hao W, Meng Y, Yu W, Chang J. Transition‐Metal‐Free N‐Functionalization of Benzimidazoles and Related Azaheterocycles with α‐Acyloxy Sulfides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Hao W, Li K, Ye C, Yu W, Chang J. Iodine-Mediated C═C Double Bond Cleavage toward Pyrido[2,1- b]quinazolinones. Org Lett 2022; 24:3286-3290. [PMID: 35446041 DOI: 10.1021/acs.orglett.2c01183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A transition-metal-free C═C double bond cleavage reaction employing molecular iodine is described. In the presence of K2CO3 as the base, I2-mediated C═C bond cleavage followed by intramolecular annulation of N-(2-vinylaryl)pyridin-2-amine substrates produces pyrido[2,1-b]quinazolinones and related heterocyclic compounds. This reaction can be completed on a gram scale and has been successfully applied to the synthesis of compounds with important biological properties, including efflux pump inhibitory and antiallergic activities.
Collapse
Affiliation(s)
- Wei Hao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kailu Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chenyang Ye
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|