1
|
Montiège O, Siccardi M, Sanselme M, Schneider C, Brière JF, Beucher H. Regio- and Stereoselective Electro-Mediated Carboalkoxylation of 1,3-Dienes. Org Lett 2024. [PMID: 39681354 DOI: 10.1021/acs.orglett.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
1,3-Dienes are versatile raw materials for building molecular complexity. We report herein mild conditions for the regio- and stereoselective [only the (E) isomer obtained] 1,4-carboalkoxylation of 1,3-dienes. This electrochemical multicomponent reaction provides an eco-efficient and straightforward access to a diverse range of (E)-polyfunctionalized allyl ether products, without requiring any metal catalyst.
Collapse
Affiliation(s)
- Ophélie Montiège
- CNRS, INSA Rouen Normandie, Univ Rouen Normandie, Normandie Univ, COBRA UMR (6014), F-76000 Rouen, France
| | - Marion Siccardi
- CNRS, INSA Rouen Normandie, Univ Rouen Normandie, Normandie Univ, COBRA UMR (6014), F-76000 Rouen, France
| | - Morgane Sanselme
- SMS, UR 3233, Univ Rouen Normandie, Normandie Univ, F-76000 Rouen, France
| | - Cédric Schneider
- CNRS, INSA Rouen Normandie, Univ Rouen Normandie, Normandie Univ, COBRA UMR (6014), F-76000 Rouen, France
| | - Jean-François Brière
- CNRS, INSA Rouen Normandie, Univ Rouen Normandie, Normandie Univ, COBRA UMR (6014), F-76000 Rouen, France
| | - Hélène Beucher
- CNRS, INSA Rouen Normandie, Univ Rouen Normandie, Normandie Univ, COBRA UMR (6014), F-76000 Rouen, France
| |
Collapse
|
2
|
Lefevre A, Guillot R, Kouklovsky C, Vincent G. Ferrocene-Mediated Electrochemical Polycyclization of Malonates. Org Lett 2024; 26:7403-7407. [PMID: 39189952 DOI: 10.1021/acs.orglett.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report access to the core of biologically relevant aromatic abietane diterpenoids and to the formal synthesis of podocarpic and lambertic acids or γ-lactones via an electrochemical bicyclization process initiated by the ferrocene-mediated anodic oxidation of a malonate via single electron-transfer. This approach permits escaping the use of excess of oxidants such as Mn(OAc)3 and the associated complicated purification.
Collapse
Affiliation(s)
- Antoine Lefevre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
3
|
Zhang YD, Chen M, Li Y, Liu BW, Ren ZH, Guan ZH. Enantioselective Palladium-Catalyzed Domino Carbonylative Heck Esterification of o-Iodoalkenylbenzenes with Arylboronic Acids. Org Lett 2023; 25:8110-8115. [PMID: 37921830 DOI: 10.1021/acs.orglett.3c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The current investigation presents an innovative palladium-catalyzed asymmetric carbonylative Heck esterification method. This approach facilitates the efficient synthesis of various chiral γ-ketoacid esters by utilizing o-alkenyliodobenzenes and arylboronic acids as primary substrates. This reaction achieves the creation of three carbon-carbon bonds, two carbon-oxygen bonds, and the establishment of a quaternary carbon center within a single step. The α-chiral γ-ketoacid esters were obtained in yields ranging from good to high yields, displaying enantiomeric excesses (ee's) levels up to 92% under mild reaction conditions.
Collapse
Affiliation(s)
- Yao-Du Zhang
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ming Chen
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yang Li
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Bo-Wen Liu
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
4
|
Wang C, Yang N, Li C, He J, Li H. Tuning Benzylic C-H Functionalization of (Thio)xanthenes with Electrochemistry. Molecules 2023; 28:6139. [PMID: 37630392 PMCID: PMC10459638 DOI: 10.3390/molecules28166139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Here, we report a tunable electrochemical benzylic C-H functionalization of (thio)xanthenes with terminal alkynes and nitriles in the absence of any catalyst or external chemical oxidant. The benzylic C-H functionalization can be well controlled by varying the electrochemical conditions, affording the specific coupling products via C-C and C-N bond formation.
Collapse
Affiliation(s)
- Changji Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, China
| | - Na Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Chao Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Jian He
- Hefei New Online Technology Co., Ltd., Hefei 235000, China;
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| |
Collapse
|
5
|
He J, Liu A, Yu Y, Wang C, Mei H, Han J. Electrochemical Annulation of Indole-Tethered Alkynes Enabling Synthesis of Exocyclic Alkenyl Tetrahydrocarbazoles. J Org Chem 2023. [PMID: 37216919 DOI: 10.1021/acs.joc.3c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An electrochemical sulfonylation-triggered cyclization reaction of indole-tethered terminal alkynes with sulfinates as sulfonyl sources has been developed, which affords exocyclic alkenyl tetrahydrocarbazoles in good chemical yields. This reaction features convenient operation and tolerates a wide scope of substrates with a variety of electronically and sterically diverse substituents. Furthermore, high E-stereoselectivity is observed for this reaction, which provides an efficient method for the preparation of functionalized tetrahydrocarbazole derivatives.
Collapse
Affiliation(s)
- Jingrui He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yingjie Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chengting Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Yuan H, Ji M, Xue H, Chen H, Zhang Y. Understanding the hydration of arylacetylenes to synthesize the carbonyl compounds via electroreduction of bromide intermediates. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Lv Y, Hou ZW, Wang Y, Li P, Wang L. Electrochemical monofluoroalkylation cyclization of N-arylacrylamides to construct monofluorinated 2-oxindoles. Org Biomol Chem 2023; 21:1014-1020. [PMID: 36602181 DOI: 10.1039/d2ob01883g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical monofluoroalkylation cyclization of N-arylacrylamides to synthesize monofluorinated 2-oxindoles has been developed, which employs common dimethyl 2-fluoromalonate as a monofluoroalkyl radical precursor and obviates the use of prefunctionalized monofluoroalkylation reagents and sacrificial oxidants. A variety of monofluorinated nitrogen-containing heterocyclic compounds were efficiently obtained with satisfactory yields from readily available materials.
Collapse
Affiliation(s)
- Yanxia Lv
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China.
| | - Yi Wang
- The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| |
Collapse
|
8
|
Zhang Y, Cai Z, Warratz S, Ma C, Ackermann L. Recent advances in electrooxidative radical transformations of alkynes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractDuring the past few years, electrochemical oxidative reactions through radical intermediates have emerged as an environmentally-benign, powerful platform for the facile formation of C–E (E = C, N, S, Se, O and Hal) bonds through single-electron-transfer (SET) processes at the electrodes. Functionalized unsaturated molecules and unusual structural motifs can, for instance, be directly constructed under exceedingly mild reaction conditions through initial radical attack onto alkynes. This minireview highlights the recent advances in electrooxidation in radical reactions until June 2022, with a particular focus on radical additions onto alkynes.
Collapse
|
9
|
Li L, Hou ZW, Li P, Wang L. Electrochemical Dearomatizing Spirocyclization of Alkynes with Dimethyl 2-Benzylmalonate s to Spiro[4.5]deca-trienones. J Org Chem 2022; 87:8697-8708. [PMID: 35679486 DOI: 10.1021/acs.joc.2c00939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An electrochemical dearomatizing spirocyclization of alkynes with dimethyl 2-benzylmalonates for the preparation of spiro[4.5]deca-trienones has been developed. This approach adopts ferrocene (Cp2Fe) as an electrocatalyst to produce carbon-centered radical intermediates from C-H-based malonates, which obviates the forthputting of noble-metal reagents, sacrificial chemical oxidants and 2-bromomalonates. A wide variety of spiro compounds are efficiently prepared with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Hou ZW, Li L, Wang L. Regio- and stereoselective electrochemical selenoalkylation of alkynes with 1,3-dicarbonyl compounds and diselenides. Org Chem Front 2022. [DOI: 10.1039/d2qo00320a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A regio- and stereoselective electrochemical approach for the selenoalkylation of alkynes with 1,3-dicarbonyl compounds and diselenides has been developed.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
11
|
Zheng Y, Qian S, Xu P, Zheng B, Huang S. Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|