1
|
Zhang E, Ma D, Zhu C. Glyoxylic acid monohydrate promoted reductive addition of sodium sulfinates to pillar[4]arene[1]quinone. Org Biomol Chem 2025; 23:1146-1149. [PMID: 39692202 DOI: 10.1039/d4ob01908c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
An efficient synthesis of sulfonate esters through reductive addition of sodium sulfinates to pillar[4]arene[1]quinone has been established (15 examples). Compared to the arylsulfonylation of p-quinone with sodium arylsulfinates under other acidic conditions, this work affords the hydroquinone-type 4-O-sulfonyl derivatives by using glyoxylic acid monohydrate as a promoter. The protocol features mild reaction conditions and high selectivity and is an alternative protocol for the O-sulfonylation of pillar[4]arene[1]hydroquinone.
Collapse
Affiliation(s)
- Enfu Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Da Ma
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| | - Chenghao Zhu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
2
|
Xu Y, Li R, Liang F, Peng X, Liu YA, Jia F, Wen K. Ortho-Functionalization of Pillar[4]arene[1]benzoquinone Monoxime via Selective 1,4-Addition of Grignard Reagents. Org Lett 2025. [PMID: 39849305 DOI: 10.1021/acs.orglett.4c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Ortho-functionalization of pillar[n]arenes has been a formidable challenge, partially due to the fragility of their macrocyclic skeletons. In this concise report, we describe a facile synthetic method for monoarylation/alkylation at the position ortho to the oxime functionality in pillar[4]arene[1]benzoquinone monoxime (1) via addition of Grignard reagents. The described method enables the creation of various mono-ortho-alkyl/aryl-substituted pillar[5]arene derivatives that were previously inaccessible.
Collapse
Affiliation(s)
- Yuxuan Xu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
| | - Runmei Li
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Fengjun Liang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Xiaolong Peng
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Yahu A Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States
| | - Fei Jia
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Ke Wen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| |
Collapse
|
3
|
Wei S, Cui X, Li T, Ma X, Liu L. Pillar[n]arene-Based Supramolecular Nanodrug Delivery Systems for Cancer Therapy. ChemMedChem 2025:e202400822. [PMID: 39833508 DOI: 10.1002/cmdc.202400822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Macrocyclic supramolecular materials play an important role in encapsulating anticancer drugs to improve the anticancer efficiency and reduce the toxicity to normal tissues through host-guest interactions. Among them, pillar[n]arenes, as an emerging class of supramolecular macrocyclic compounds, have attracted increasing attention in drug delivery and drug-controlled release due to their high biocompatibility, excellent host-guest chemistry, and simplicity of modification. In this review, we summarize the research progress of pillar[n]arene-based supramolecular nanodrug delivery systems (SNDs) in recent years in the field of tumor therapy, including drug-controlled release, imaging diagnostics and therapeutic modalities. Furthermore, the opportunities and major limitations of pillar[n]arene-based SNDs for tumor therapy are discussed.
Collapse
Affiliation(s)
- Shubin Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xinyi Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Tingting Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi, 535011, PR China
| |
Collapse
|
4
|
Dai XY, Liu J, Huang TT, Su QL, Chen JF, Wei TB, Yao H, Shi B, Lin Q. "Bis-Clamp-Cavity Synergy", an Efficient Approach to Improve Guest Binding Properties of Macrocyclic Host and Its Application on Detection of Al 3+ and Arg in Living Cells. Anal Chem 2024; 96:19787-19795. [PMID: 39576338 DOI: 10.1021/acs.analchem.4c05223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Improving the selective and sensitive binding properties of macrocyclic hosts to target guests is always an interesting challenge. Herein, we introduce a novel "bis-clamp-cavity synergy" strategy to enhance the selectivity and binding sensitivity of pillararenes toward target guests. To achieve this goal, we designed and synthesized A,A'-bis-hydroxynaphthoylhydrazone-functionalized conjugated pillar[5]arene (HGP5), in which bis-hydroxynaphthoylhydrazone plays the role of clamps, while the pillar[5]arene provides the macrocyclic cavity. The bis-clamps and macrocyclic cavity could supply synergistic binding for target guests through multicoordination interactions, multihydrogen bonds, C-H···π and cation···π interactions, and so on. Furthermore, the introduction of the conjugated pillar[5]arene can enhance the signal transmission ability, thereby improving the sensitivity for guest recognition. Benefiting from the bis-clamp-cavity synergy, HGP5 exhibits efficient selective recognition for Arg and Al3+. It achieves colorimetric and fluorescent dual-channel recognition for Arg (with the LOD of 2.99 × 10-8 M) and ultrasensitive recognition of Al3+ (with the LOD of 7.94 × 10-9 M). This strategy can be effectively applied to detect Arg and Al3+ in aqueous solution and live cells.
Collapse
Affiliation(s)
- Xin-Yu Dai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Juan Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University (Northwest University for Nationalities), Xibei Xincun, Lanzhou 730000, China
| | - Ting-Ting Huang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Qing-Ling Su
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Jin-Fa Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Bingbing Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Eco-environmental Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
5
|
Vinodh M, Al-Azemi TF. Crystal structure and supra-molecular features of a host-guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene. Acta Crystallogr E Crystallogr Commun 2024; 80:1069-1074. [PMID: 39372180 PMCID: PMC11451480 DOI: 10.1107/s2056989024009216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
A host-guest supra-molecular inclusion complex was obtained from the co-crystallization of A1/A2-bromo-but-oxy-hy-droxy difunctionalized pillar[5]arene (PilButBrOH) with adipo-nitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adipo-nitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C-H⋯O and C-H⋯π inter-actions. Both functional groups on the macrocyclic rim are engaged in supra-molecular inter-actions with an adjacent inclusion complex via hydrogen-bonding (O-H⋯N or C-H⋯Br) inter-actions, resulting in the formation of a supra-molecular dimer in the crystal structure.
Collapse
Affiliation(s)
- Mickey Vinodh
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Talal F. Al-Azemi
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| |
Collapse
|
6
|
Kaneda T, Kato K, Ohtani S, Ogoshi T. Pillar[5]arenes decorated with six-membered-ring aromatics at all the substitution positions. Chem Sci 2024; 15:10651-10658. [PMID: 38994425 PMCID: PMC11234882 DOI: 10.1039/d4sc01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Macrocyclic molecules have characteristic properties different from linear ones, such as high symmetry and guest-inclusion ability. To bring drastic changes to these properties, direct introduction of many substituents is a challenging but effective tool. Herein, we attain direct installation of ten six-membered-ring aromatic π-units into both rims of a pillar[5]arene. In contrast to previous pillar[n]arenes with less hindered five-membered-ring units, which showed conformational complexity and crushed crystal structures, the per-phenyl-substituted pillar[5]arene has a cylinder-shaped crystal structure with a dichloromethane inside the cavity and is obtained as a single pair of D 5-symmetric enantiomers. The average dihedral angles between the core and peripheral benzene rings sharply increase from 38° to 66°. These differences indicate the importance of local steric repulsion on both rims for determining the structures and properties of macrocycles.
Collapse
Affiliation(s)
- Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
7
|
Coady Z, Smith JN, Wilson KA, White NG. Stereoselective Single Step Cyclization to Give Belt-Functionalized Pillar[6]arenes. J Org Chem 2024; 89:1397-1406. [PMID: 38214497 DOI: 10.1021/acs.joc.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two macrocycles were synthesized through cyclization reactions of secondary benzylic alcohols, giving pillar[6]arenes with a methyl substituent at each belt position. These macrocycles form stereoselectively with only the rtctct isomer with alternating up and down orientations of the belt methyl groups definitively identified. Isolated yields were modest (7 and 9%), but the macrocycles are prepared in a single step from either a commercially available alcohol or a very readily prepared precursor. X-ray crystal structures of the macrocycles indicate they have a capsule-like structure, which is far from the conventional pillar shape. Density functional theory calculations reveal that the energy barrier required to obtain the pillar conformation is significantly higher for these belt-functionalized macrocycles than for conventional belt-unfunctionalized pillar[6]arenes.
Collapse
Affiliation(s)
- Zeke Coady
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jordan N Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
8
|
Kato K, Kaneda T, Ohtani S, Ogoshi T. Per-Arylation of Pillar[ n]arenes: An Effective Tool to Modify the Properties of Macrocycles. J Am Chem Soc 2023; 145:6905-6913. [PMID: 36929722 DOI: 10.1021/jacs.3c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Installation of various substituents is a reliable and versatile way to alter the properties of macrocyclic molecules, but high-yield and controlled methods are not always available especially for multifold reactions. Herein, we report 10- and 12-fold introduction of aryl substituents onto both rims of cylinder-shaped pillar[n]arenes, which usually have alkoxy substituents slanting to the cylinder axes. Although alkoxy pillar[5]arenes exist as D5-symmetric enantiomeric pairs, arylated pillar[5]arenes provide crushed single-crystal structures and stereoisomerism including C2-symmetric conformations depending on the aryl groups. Pillar[n]arenes with 2-benzofuranyl groups display bright fluorescence with quantum yields of 88-90% and no host-guest complexation with electron-deficient molecules in solution due to large deviation from alkoxy compounds. A benzofuran-appended pillar[6]arene instead captures small gaseous molecules in the solid state, probably owing to outside spaces surrounded by aromatic rings.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
9
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim-Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022; 61:e202204589. [PMID: 35451151 DOI: 10.1002/anie.202204589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/06/2022]
Abstract
A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.
Collapse
Affiliation(s)
- Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Tushar Ulhas Thikekar
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Wangjian Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Jiong Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Nianfeng Ouyang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
10
|
Host–guest binding selectivity of ethylated pillar[5]arene (EtP5A) towards octane, 1,7-octadiene, and 1,7-octadiyne: a computational investigation. Struct Chem 2022. [DOI: 10.1007/s11224-022-02002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim‐Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Chao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | | | - Wangjian Fang
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Rong Chang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jiong Xu
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Nianfeng Ouyang
- Xiamen University College of Chemistry & Chemical Engineering CHINA
| | - Jun Xu
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Yan Gao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Minjie Guo
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Han Zuilhof
- WUR: Wageningen University & Research Chemistry NETHERLANDS
| | - Andrew Chi-Hau Sue
- Xiamen University College of Chemistry and Chemical Engineering 422 Siming S. Rd.Siming Dist. 361005 Xiamen CHINA
| |
Collapse
|